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Abstract

The muted volatility of inflation during the Great Recession and its aftermath has
refocused attention on the constraints that firms face when adjusting prices. Using
new empirical and theoretical results, I argue that each firm’s choice of how much
information to acquire to set prices plays a central role in determining the patterns of
pricing at the product-level and the degree of aggregate price rigidity in response to
shocks. In support of the information channel, I present product-level evidence that
firms price goods using coarse pricing policies that are updated infrequently and consist
of a small menu of prices. Firms are heterogeneous in the complexity and duration of
their pricing policies, and this heterogeneity is reflected in differential responses to the
Great Recession cycle, with firms exhibiting more complex policies responding more
aggressively. I develop a theory of information-constrained price setting that generates
coarse pricing endogenously, and quantitatively matches the discreteness, duration, and
volatility of policies in the data. The information friction dampens the responsiveness
of prices to shocks, and, coupled with heightened volatility, induces firms to keep prices
relatively high, to protect against losses in an uncertain environment.
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1 Introduction

The behavior of inflation during the Great Recession and its aftermath has challenged

conventional models of price adjustment. First, the United States experienced an unexpect-

edly mild disinflation during the most severe downturn since the Great Depression. Second,

inflation was slow to pick up during the subsequent recovery.1 What accounts for these muted

inflation dynamics in the midst of such turbulence in economic activity remains an open ques-

tion. Using data and theory, I argue that information frictions—specifically firms’ choices

of how much information to acquire to set prices—played a key role in shaping product-level

pricing patterns and in dampening aggregate price dynamics during this period.

In support of the mechanism of endogenous information frictions, I first present evidence

that firms set prices using plans that are sticky and coarse. I identify these plans by searching

for changes in the distribution of prices charged over time for each individual good. I detect

these change points using an adaptation of the Kolmogorov-Smirnov test, which allows for

any change in either the shape or the support of a distribution. Applied to weekly scanner

price data covering the 2006 to 2015 period, the method identifies pricing policies that change

every seven to eight months, and typically consist of a menu of three to four distinct price

points, among which the firm alternates roughly every three weeks.

The discreteness of price levels despite the high frequency of price changes suggests that

while the timing of price adjustment is quite flexible, the level to which the price adjusts is

more constrained. This pattern is at odds with prior models of rigid prices, which assume

that the timing of adjustment is constrained—exogenously or due to menu costs—but that

once the firm decides to adjust, a new price is chosen optimally.2 As I show in the second

part of the paper, this pattern arises endogenously in a model of information-constrained

pricing, as a cheap way for firms to crudely track the optimal full information price.

As is well-known in the literature, there are large differences across products in the

frequency of price changes (Nakamura & Steinsson, 2008). I provide an alternative clas-

sification of products, in terms of the types of pricing policies employed. I identify three

broad types of policies. Approximately 12% of products feature single price policies (SPP),

like the canonical time-dependent or state-dependent pricing models. These products adjust

their prices much less frequently and by smaller amounts than average, suggesting that they

face a relatively low volatility of their target price. On the other hand, 60% of products

exhibit policies with multiple rigid prices (MRP). The volatility of the data is concentrated

in these products, which display very frequent and large price changes. However, despite

1Hall (2011), Ball & Mazumder (2011), Watson (2014), and Del Negro, Giannoni & Schorfheide (2015).
2An exception is the theory of rigid pricing due to ambiguity aversion by Ilut, Valchev & Vincent (2019).
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this volatility, only three-to-four distinct price levels are typically realized over the life of

a policy realization. These products seem to face a high volatility in their desired price,

to which they respond by picking a small set of prices among which to alternate, and then

occasionally updating this set. The coarseness and volatility of these product prices pose

the biggest challenge to existing pricing models, but can be rationalized as a way for firms

to economize on information costs. The remaining 28% of products are characterized by

one-to-flex policies (OFP), in which one rigid price is accompanied by flexible, short-lived

deviations to and from it. This type of pattern has been generated in models that endow

firms with different technologies for setting regular versus temporary prices (Kehoe & Midri-

gan, 2015; Guimaraes & Sheedy, 2011). In the data, these goods feature large and frequent

policy shifts, but muted within-policy price volatility. They seem to face more volatility in

their desired price than the SPP goods, but also relatively high costs of implementing more

complex policies. The theory proposed generates this range of policy types endogenously, as

a function of differences in fundamental parameters.

Classifying products by policy type proves useful for understanding inflation dynamics

during the Great Recession. Inflation differs significantly across policy types in terms of

its volatility and its sensitivity to the state of the economy. While the inflation rates for

all product types moved in tandem during the relatively tranquil periods at the beginning

and end of the sample, they diverged substantially during the recession and its immediate

aftermath. Once inflation started to fall in late 2008, it fell twice as much for the MRP

goods as for the SPP goods. Moreover, SPP products continued to raise prices throughout

the crisis, while MRP products actually cut prices. During this period, the SPP inflation

rate was much less volatile, while the MRP inflation responded much more aggressively to

the cycle. The information-based theory presented in this paper predicts precisely these

effects, through the information acquisition channel: Firms that generally operate in more

volatile markets have incentives to acquire more accurate information, which in turn enables

them to choose more complex pricing policies; as a result, they also respond to the aggregate

state of the economy more aggressively.

These findings underscore the value of studying pricing data in its entirety, rather than

filtering out temporary price changes. Transitory price volatility is crucial to identifying

the type of policy of each good, and moreover, the dynamics of different policies during the

Great Recession show that transitory price volatility is at least partially responsive to the

aggregate state, and does not wash out in the aggregate. This result qualifies the pricing

literature’s conclusion that micro price volatility is not relevant to aggregate rigidity. The

proposed theory then quantifies the magnitude of this effect.

Distinguishing between policy changes and raw price changes is also useful for evaluating
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alternative theories of price setting and identifying potential sources of shocks. The dynamics

of price and policy adjustment over time illustrate this point. First, the frequency and size of

within-policy price changes are positively correlated over the sample period. This correlation

is difficult to reconcile with models of menu costs, which would predict a negative correlation.

Instead, it suggests heterogeneity in the volatility of market conditions faced by different

firms: The prices of some products rarely change, and even when they do, they change

by modest amounts, while others feature the opposite pattern. Second, the rate of policy

adjustments rose during the Great Recession, suggesting at least partial state-dependence

in the updating of policies over time, ruling out Calvo-like policy adjustment. At the same

time, neither the rate nor the size of raw price changes differed significantly. Moreover,

the incidence of multi-rigid price policies declined in the recession, while the incidence of

single-price policies rose. These patterns point to the role of heightened volatility in shaping

price dynamics during this decade. Firms responded to the increase in volatility associated

with the Great Recession not by making their pricing plans more complex, but rather by

keeping them simple and reviewing them often. This interpretation is further supported

by the increase in the rate of policy changes and in the incidence of single price policies

that occurred in 2011, which was another period of increased volatility. The theory of

information frictions presented in the second part of the paper generates these patterns of

policy adjustment in response to heightened volatility.

What drives the large within-policy price volatility? How much of it reflects responding

to shocks versus price discriminating (PD) among heterogeneous customers? In practice,

these two motives interact, making it hard to isolate the role each plays in generating price

volatility. But doing so is important for understanding the magnitude of the micro-macro

disconnect in price setting. If most of the micro volatility reflects PD, then it may not be

relevant for understanding the aggregate dynamics of inflation. To make progress on this

question, I assume that PD products feature policies that mostly consist of price cuts from

a high modal price. Roughly one third of the OFP series and one half of MRP series have

this property. But it turns out that the volatility of the data is not concentrated in the PD

series. PD and non-PD series have similar policies, with two exceptions: PD policies last

about twice as long, suggesting less fundamental volatility, and they have somewhat larger

within-policy price changes, consistent with having large temporary discounts. Since the

theory proposed does not include price discrimination, I only target the non-PD series.

The theory proposed to rationalize the empirical findings embeds costly information

in an otherwise standard model of price setting. A continuum of heterogeneous firms set

prices in the face of stochastic market conditions. All information about market conditions is

available to these price-setters, but at a cost. Firms choose how much information to acquire,
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trading off pricing accuracy to save on information costs. Formally, each firm implements

an optimal policy that specifies rules for acquiring information and for setting prices based

on this information. Moreover, the policy itself can be revised, by paying a fixed cost. If it

decides to review its policy, the firm pays a fixed cost which enables it to gather extensive—

for simplicity, complete—information about the state of the economy and to reoptimize its

policy. These reviews generate breaks in pricing, as seen in the data. In each period, the

firm monitors its environment to decide (i) whether or not to pay the fixed cost to update

its policy, and (ii) what price to charge in the period. These decisions are based on two

imperfect signals, a review signal and a pricing signal. Both signals are modeled following

the rational inattention literature (Sims, 2003), using entropy reduction as a measure of the

informativeness of a signal (Shannon, 1948), and assuming that the cost of each signal is

linear in this measure. The result is stochastic state dependence in both the review and the

pricing decisions. How closely prices track the full-information profit-maximizing target price

depends on firms’ willingness to pay for more accurate signals, and on the frequency with

which they choose to pay the (larger) fixed cost to learn the state and reset their policies.

The setup can be seen as capturing the interaction between headquarters (which chooses

the policy) and the local branch (which sets prices day-to-day). Alternatively, it can be seen

as a reduced-form representation of the relationship between the producer and the retailer:

the overall policy is the result of (relatively infrequent) negotiations between the two parties,

while the exact implementation (for instance, when to implement a sale) is up to the retailer.3

The theory delivers several novel results. First, it yields coarse prices in an infinite-horizon

setting with Gaussian shocks. Even though the target price is continuously distributed, and

its distribution is changing continuously, the firm reduces this complex state to a discrete,

coarse approximation. The ability to occasionally undertake reviews is key for this result:

The reviews prevent the distribution of target prices from becoming too dispersed. And

having a manageable distribution of target prices to entertain between reviews means that

the firm can afford to pick a pricing policy with a finite number of distinct price points. How

many price points are charged with positive probability becomes a numerical question.

Second, the theory can generate heterogeneity in the complexity of pricing policies chosen

by firms in different sectors or over time, consistent with the data. The model has a threshold

cost of information that determines whether or not the firm acquires any pricing signals

between reviews. If the sensitivity of profits to mispricing between reviews is low, relative

to the cost of paying for the additional pricing signal, the firm chooses a single-price policy

between reviews. It sets a price, and then it only monitors the evolution of market conditions

to decide if it is time to change this price. Beyond this threshold, the cardinality of the pricing

3See Anderson, Jaimovich & Simester (2015) for the pricing practices of a U.S. retailer.
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policy gradually increases, as does the accuracy with which the firm chooses which price to

charge when. Hence, the coexistence of single-price, one-to-flex, and multiple-rigid-prices

policies arises naturally if one allows firms to differ in the volatility of idiosyncratic shocks,

in the costs of monitoring market conditions, or in the parameters governing the sensitivity

of profits to mispricing. Quantitatively, the model matches the duration, coarseness, and

volatility of the SPP and MRP policies documented in the empirical part of the paper.

Third, the review decision and pricing decision interact to determine how firms respond

to shocks. As a result, matching the micro facts on pricing policies is essential for getting

the aggregate dynamics right. In the general equilibrium parameterized to match the char-

acteristics of SPP and MRP policies in the data, the theory predicts that multi-price firms

are more responsive to an aggregate shock compared with single-price firms, especially on

impact. This is consistent with the inflation dynamics observed in the data during the Great

Recession. But is the difference purely reflecting the higher frequency of policy changes of

MRP firms? And is the within-policy transitory volatility irrelevant to these firms’ aggregate

response? I find that the answer to both of these questions is no. The MRP firms respond

differently to the shock not only because they update their policies more frequently, but also

because they adjust prices between reviews. Filtering out the within-policy price volatility

would overstate the degree of rigidity for the MRP series in the two-to-three months imme-

diately following the shock (before many of the MRP firms have revised their policies), while

under-stating it at longer horizons (by underestimating the degree of mistakes in within-

policy pricing). Hence, the existence of transitory price volatility changes the impact and

persistence of inflation’s response to shocks.

Fourth, the severity of the information friction determines the degree of over-pricing

relative to the full information benchmark. The profit function is asymmetric, generating

larger losses from under-pricing (and having to meet the large resulting demand at high cost)

than from over-pricing (and facing limited demand). As a result, information-constrained

firms err on the side of over-pricing. Higher uncertainty makes the information problem

more severe, generating even more over-pricing. Quantitatively, I estimate over-pricing of

between two and five percentage points.

Finally, higher uncertainty also dampens firms’ responses to shocks. This result stands in

contrast to the predictions of full-information state-dependent pricing models, and it implies

more effective monetary policy during high volatility periods. Intuitively, the result reflects

the endogenous response of the firm’s information acquisition strategy: When volatility rises,

the firm increases its information expenditure, but it nevertheless faces higher posterior

uncertainty. This effect may help explain recent inflation dynamics. The Great Recession

was marked by both low aggregate demand and high volatility. These forces push prices in
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opposite direction: low aggregate demand induces the firm to reduce its prices, while higher

volatility requires setting higher prices. This tension may help rationalize why inflation did

not fall more during the Great Recession.

The empirical analysis contributes to a large literature on product-level price patterns

(see Klenow & Malin, 2010 for a review).4 This work has focused attention on transitory

sales versus regular prices. I depart from that approach by interpreting both the transitory

and the regular price levels as chosen to be jointly optimal, as part of an integrated policy.

The resulting evidence of coarse policies is consistent with the simple price plans postulated

by Eichenbaum, Jaimovich & Rebelo (2011) and generated here endogenously. Relative to

this work, I also present evidence on patterns during the Great Recession.

The theory brings together different features from the costly information literature, pri-

marily Reis (2006), Woodford (2009), and Matějka (2016), combining both lumpy and flow

information acquisition, modeling a richer signal structure, and embedding the friction in a

general equilibrium economy.5 Integrating these features is important for reconciling high

product-level pricing volatility with aggregate sluggishness. Quantitatively, I build on prior

work by targeting a rich set of micro facts and aggregate dynamics. Lastly, I expand the

discreteness results of Matějka (2016) beyond the static model with uniform shocks to a

dynamic, infinite-horizon model with persistent Gaussian shocks. This shows that the ratio-

nal inattention framework can generate discrete outcomes in a wide range of environments,

which is promising for future work on lumpy adjustment in macroeconomics.

2 Empirical Evidence

In this section I discuss two sets of empirical results. First, I characterize the types of

pricing policies observed over the entire sample period. Second, I focus on how these policies

behaved during the Great Recession and the subsequent recovery, and what they implied for

the dynamics of aggregate inflation.

2.1 Pricing Policies in Micro Data

The Data I use the Retail Scanner Database from The Nielsen Company (US), LLC.

This database has weekly point-of-sale data on prices and quantities for products sold in

stores from 90 retail chains across the United States. Product coverage represents about

27% of the total goods consumption measured by the Consumer Expenditure Survey of the

Bureau of Labor Statistics (BLS). Categories include health and beauty care, food, beverages,

4See also Bils & Klenow (2004), Klenow & Willis (2007), Klenow & Kryvtsov (2008).
5Other models of price setting with endogenous information acquisition include Maćkowiak & Wiederholt

(2009, 2015), Paciello (2012), Paciello & Wiederholt (2014) and Pasten & Schoenle (2016).
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general merchandise, and others.6 I limit the sample to the store with the largest number

of observations from each chain.7 Some series have missing observations. I keep only series

with at least 52 contiguous observations. The resulting sample has weekly observations on

more than one million unique store-UPC pairs, from January 2006 through December 2015.

The advantages of these data are the high frequency of observations, the relatively long

time series for individual products, and the large number of products within the categories

and across locations. Conversely, the micro data underlying the BLS’s Consumer Price

Index (CPI) has monthly or bimonthly sampling, high product turnover rates, and narrower

sampling within product groups and across regions. The drawback of the Nielsen data is

the narrow coverage of product categories. Nevertheless, it covers products whose prices are

highly volatile and exhibit precisely the sharp, transitory price swings that have been at

the forefront of the recent price dynamics literature. The median weekly frequency of price

changes is 24.6% and the median absolute size of price changes is 11.9%. For comparison,

the monthly frequency and the size of price changes for products underlying the CPI average

10.6% and 9.6% over the 2006-2014 period (Nakamura, Steinsson, Sun & Villar, 2018).8

The Break Test The empirical method identifies pricing plans at the product level by

looking for breaks in individual price series. To identify the break points, I adapt the

Kolmogorov-Smirnov test, which tests whether two samples are drawn from the same dis-

tribution. I interpret each break as the transition to a new plan, characterized by a new

distribution of prices.

Building on work that estimates the location of a single break in a series (Deshayes &

Picard, 1986, and Carlstein, 1988), I modify the method to identify an unknown number of

breaks at unknown locations in a series. I use an iterative procedure similar to that of Bai

& Perron (1998), who sequentially estimate multiple breaks in a linear regression model. I

first test the null hypothesis of no break in a series; upon rejection, I estimate the location

of the break; I then iterate on the two resulting sub-series until I fail to reject the null of no

6Data provided through the Nielsen Datasets at the Kilts Center for Marketing Data Center at The
University of Chicago Booth School of Business, http://research.chicagobooth.edu/nielsen. The conclusions
drawn from the Nielsen data are my own and do not reflect the views of Nielsen. Nielsen is not responsible
for, had no role in, and was not involved in analyzing and preparing the results reported herein. The data
have also been used by Beraja, Hurst & Ospina (2018) to analyze dynamics in regional price indices.

7DellaVigna & Gentzkow (2017) document near-uniform pricing within chains, so I use one store per
chain. As is common in the literature, I exclude the Deli, Packaged Meat, and Fresh Produce departments.

8I exclude price changes less than 1% in absolute value (11% of all changes). In the full sample, the
median frequency and size of price changes are 28% and 11%. However, as argued by Eichenbaum, Jaimovich,
Rebelo & Smith (2014), very small price changes may reflect measurement error, since in these data, a price
observation is the volume-weighted average price of the product in each week. Prices reflect bundling (e.g.
2-for-1 deals) and discounts associated with the retailer’s coupons or loyalty cards. Variation in bundling or
in the use of such discounts across weeks may induce spurious small price changes.
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break. The critical value used to reject the null of no break is determined via simulations,

starting from the asymptotic critical values provided by Deshayes & Picard (1986), which

are valid for the test of a single break on i.i.d. data drawn from continuous distributions.9

The test’s usefulness depends on its ability to correctly identify the timing of breaks. I

find that the break test correctly identifies breaks 91% of the time in simulated data. It finds

the exact location of the break 94% of the time and is off by two periods in the remaining

cases. In simulated series restricted to have at least five observations between breaks, the

test finds virtually all breaks. It loses power for policies lasting less than five weeks, because

there are not enough data points to be confident about the distribution generating them.

Applied to the Nielsen product-level series, this procedure identifies interesting patterns

of across-policy and within-policy volatility. Table I reports the key facts.

Stickiness The first empirical result is that the identified pricing policies change infre-

quently. Breaks in the price series typically occur every 7.7 months, and most policies last at

least 4.5 months, even though raw prices change every three-to-four weeks. For comparison,

papers that seek to filter out transitory price volatility report the duration of regular or

reference prices ranging from 7.8 months to 12.7 months in grocery store data, and from 6.7

months to 14 months in the CPI.10 This variation across studies even when using similar

data highlights the fact that measures of stickiness are sensitive to the definition of perma-

nent versus transitory price changes and to the filters implemented to identify them.11 An

advantage of the break test over the filters is precisely the fact that it sidesteps the need to

take a stand on how to define and identify regular versus transitory price changes, which is

the source of a big portion of the dispersion in estimates in the existing literature.

Volatility Between consecutive breaks, the prices charged are quite volatile. The median

weekly frequency of within-policy price changes is 24.6%, consistent with existing work that

has identified frequent transitory price volatility accompanying the slower dynamics of reg-

ular or reference prices. The data also feature large price changes both within and across

9I simulate data as a mixture of processes that represent commonly observed pricing patterns: sticky
prices, sticky prices with transitory deviations of variable sign, size, and duration, and sticky plans with a
variable number of prices. The simulation targets the range of frequency and size of price changes observed
in the micro data. The critical value is determined by trading off power against false positives in simulated
data. The online appendix details the method and its performance across the different processes.

10Midrigan (2011), Kehoe & Midrigan (2015) and Eichenbaum et al. (2011) report statistics for grocery
store data and Klenow & Kryvtsov (2008), Nakamura & Steinsson (2008), and Kehoe & Midrigan (2015) for
CPI data, using different filters. I report the monthly implied duration = -1/ln(1-median monthly frequency)
for all studies, to limit bias due to the censoring of individual price series.

11In particular, v-shaped filters tend to yield significantly lower duration estimates, because they only
allow for transitory price decreases from a rigid mode, whereas I find that transitory price increases from
the rigid mode occur in more a third of the policy realizations in my sample.
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Table I: Characteristics of Pricing Policies

All Single-price One-to-flex Multi-rigid

Fraction of series (%) 100 12.0 28.5 59.5

Monthly frequency of policy changes (%) 12.2 7.8 17.3 12.0

Implied policy duration (months) 7.7 12.3 5.3 7.9

Freq. of weekly price changes within (%) 24.6 0.6 15.0 35.8

Size of price changes within (%) 11.9 5.8 9.9 13.6

Size of shift across (%) 11.3 8.5 11.7 11.5

Policy cardinality 3 1 3 4

Note: Nielsen Retail Scanner data, 2006-2015. Implied policy duration is the duration implied
by the median monthly frequency of policy changes. Frequency of weekly price changes within
is the median weekly frequency with which prices change between breaks. Size of price changes
within is the absolute value and is non-zero for SPP because the category allows for rare devi-
ations from the modal price. Size of shift across is the median absolute change in the weighted
average price across policy realizations.

policy changes. The median absolute size of within-policy price changes is 11.9% and the

median shift in prices across consecutive policy realizations is 11.3%.12 These magnitudes are

consistent with prior evidence that prices often change by amounts that are much larger than

what is needed to keep up with aggregate inflation. Instead, they point to the importance

of idiosyncratic drivers of price adjustment (e.g. Golosov & Lucas Jr, 2007, and Klenow &

Kryvtsov, 2008). The novelty here is the distinction between within-policy price changes

and shifts in the price levels across policies. This distinction is useful, since it can identify

the role of different drivers of price variability. Within-policy volatility may be primarily

driven by transitory shocks or price discrimination motives, while the shift in prices across

policies may be driven by more persistent shocks.

The patterns of volatility can also identify different frictions and sources of heterogeneity

in price adjustment. Figure 1a shows a scatter plot the frequency and size of within-policy

price changes, and Figure 1b shows a scatter plot of the frequency of policy changes versus

the size of shifts across policies, for the different product groups in the sample. The positive

correlation between the frequency and the size of adjustment in these panels is difficult to

reconcile with theories of price rigidity driven by heterogeneous menu costs, which would be

12The policy shift is obtained by computing the average weighted price within each policy realization,
and then computing the absolute value of the change in this average across consecutive policies.

9



0.0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25

Fr
e
q
u
e
n
cy

Size

(a) With-policy price changes

0.00

0.02

0.04

0.06

0 0.05 0.1 0.15 0.2 0.25

Fr
e
q
u
e
n
cy

Size

(b) Across-policy shifts

Figure 1: Frequency and size of within and across policy price changes across product groups

Note: Nielsen Retail Scanner data, 2006-2015. Panel (a) plots the frequency against the

absolute size of within-policy price changes. Panel (b) plots the frequency of policy changes

against the absolute size of the shift in the average price across consecutive policies. Points

indicate means at the product group level. The expenditure-weighted medians for the full

sample are in black.

generate a negative correlation between the size and the frequency of adjustment. Instead,

these plots suggest heterogeneity in the volatility of market conditions that firms face. Some

products rarely update their prices, and even when they do, they change by modest amounts,

while others change prices quite frequently and also by large amounts.

Coarseness Although they last a fairly long time and display volatile prices, policy realiza-

tions also exhibit coarse pricing. The median number of distinct prices per policy realization

is three, and the large majority of policies have less than six price points.13 This find-

ing points to the “disproportionate importance” of a few price points at the policy level,

consistent with similar evidence at the series level documented by Klenow & Malin (2010)

using the micro data underlying the CPI. This coarseness is also what helps identify break

points. What changes systematically across policy realizations is the support of the price

distribution; there is no consistent change in the shape or the cardinality of the distribution.

Overall, firms appear to have flexibility in the timing of price adjustment, but rigidity in

the level to which the price adjusts. This combination is at odds with virtually all models of

rigid pricing, in which, conditional on deciding to adjust, firms flexibly choose a new price,

thus ruling out rigid price levels (insofar as market conditions evolve smoothly). It is also at

odds with models in which firms choose deterministic price paths that generate continuous

gradual adjustments. The theory proposed in the next section generates the coexistence of

13These statistics are based on average weekly prices, so they likely understate coarseness.
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these two features of the data.

Policy Heterogeneity Prior work has documented substantial heterogeneity in the fre-

quency of price changes across goods (e.g., Nakamura & Steinsson, 2008). I find that more

generally, there is heterogeneity in the types of pricing policies that products exhibit. More-

over, the different policy types can be matched to some popular models of price setting,

while ruling out others.

I classify the policy realizations between consecutive breakpoints in terms of the rigidity

in the observed price levels. I then classify each product series in terms of the types of policy

realizations observed over the life of the series.14 Figure 2 shows the incidence of policy types

across product groups, and Table I presents key statistics.15

Single-Price Policies The workhorse Calvo or menu cost models of rigid price setting

generate sequences of single-price policies (SPP). Each policy realization consists of a single

price, and a break is a shift to a new price. In the data, only about 2% of the series

are characterized by such clean single-price plans. Hence, I relax the definition of SPP

series to allow for occasional deviations from such rigidity, recognizing that such infrequent

deviations are likely not a systematic feature of the firm’s pricing policy and may reflect

some degree of measurement error. Specifically, I identify a realization of a single-price

policy features as a single sticky price with at most one deviation between two consecutive

breaks, and I categorize as effectively single-price products all products for which at least

90% of observations fall inside such policy realizations. Approximately 12.0% of products

are SPP products defined in this way.

The prices of SPP goods adjust much less frequently, and by less when they do adjust:

the median policy duration is 12.3 months versus 7.7 months for all products, and the median

shift in prices is 8.5% versus 11.3% for all products. These goods appear to face a relatively

low volatility of their desired price that does not warrant designing complex pricing policies

or undertaking large or frequent price changes.

One-to-Flex Policies Motivated by the high incidence of transitory price changes in the

data, more recent pricing models (Kehoe & Midrigan, 2015 and Guimaraes & Sheedy, 2011)

feature a rigid regular or reference price accompanied by transitory deviations to and from it,

14For this classification, I assume that the type of policy employed for a particular product does not
change over the sample period, and I test this assumption in Section 2.2.

15The online appendix reports statistics at the policy-product level, which are consistent with those at
the series level. It also reports statistics based on an alternative series classification method; alternative
critical values for the break test; and alternative identification of breakpoints, using the rolling mode filter
of Kehoe & Midrigan (2015).
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Figure 2: Classification of series by type of pricing policy, across product groups

Note: Nielsen Retail Scanner Data. Percent of series of each type in each product group.

in a one-to-flex pattern.16 I identify the OFP series in the data as series for which a plurality

of policy realizations feature the OFP pattern.17 In the data, 28.5% of products are OFP

series. The median policy duration is much shorter, at 5.3 months, and the median shift in

average prices across policy realizations is 11.7%. However, the policies themselves are not

very volatile or complex. They display two or three distinct prices, and the median frequency

with which prices adjust inside policies is only 15.0% (versus 24.6% for all products). The

relatively high across-policy volatility together with the lower within-policy volatility suggest

that these products face a higher volatility in their desired price than the SPP goods, but

also a high cost of implementing complex policies, which induces them to instead update

their policies more frequently.

Multi-Rigid Policies Underscoring the rigidity in price levels beyond that of the modal

price of each price plan, 59.5% of products are characterized by policies with multiple rigid

prices. These are series for which a plurality of policy realizations feature at least two prices

16Kehoe & Midrigan (2015) assume that firms can “rent” a one-period price deviation for free, but must
pay a cost to change the price permanently. Alternatively, Guimaraes & Sheedy (2011) develop a price
discrimination model that features a two-price distribution in the steady state; with shocks, they assume
that the high price changes a la Calvo, while the low price changes freely.

17Since price data are noisy, I allow for some flexibility in categorizing products, by allowing for SPP
or MRP policy realizations inside OFP series. In the online appendix, I report results for an alternative
classification in which OFP series do not exhibit any MRP realizations. This reduces the incidence of
products categorized as OFP and makes these products look very similar to SPP goods.
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that are revisited over the life of the policy.18 The median policy duration for these products

is 7.9 months, but only three to four distinct prices are typically charged over the life of

the policy. These products exhibit high volatility: The median shift in prices across policy

realizations is 11.5%, the median absolute size of within-policy price changes is 13.6%, and

the median frequency of within-policy price changes is 35.8%. These statistics suggest that

these products face highly volatile market conditions, and they adjust by choosing more

complex — though nevertheless coarse — pricing policies.

The prevalence of MRP goods in the data poses a challenge to existing theories of price

rigidity. It is instead consistent with the hypothesis that firms set a small menu of prices

which they update relatively infrequently. The theory developed in Section 3 uses costly

information to generate such plans endogenously.

Price Discrimination Policies Overall, series overwhelmingly feature price changes

between policy shifts. What drives this within-policy volatility? The obvious reasons are

responding to shocks and attempting to price discriminate among heterogeneous customers.

In practice, these motives interact, making it difficult to isolate how important each one is for

price volatility. But disentangling these factors is important for quantifying the severity of

the disconnect between product-level price volatility and aggregate sluggishness in inflation.

If price discrimination is a dominant factor, then the product-level price volatility may

be less relevant for the aggregate dynamics of inflation. I estimate the incidence of price

discrimination policies (PDP) by defining them as policies in which the maximum price is also

the mode. Among one-to-flex and multi-rigid series, I label a series as price discriminating

if a majority of its policy realizations are PDP. This definition is consistent with models of

price discrimination that feature a mass point at the high price of the pricing policy (e.g.,

Guimaraes & Sheedy, 2011). Roughly one third of the OFP series and one half of MRP series

fit this description. Table II reports the statistics for the price discrimination series separately

from the non-price discrimination series. PD series feature much longer policy durations

(suggesting lower fundamental volatility) and somewhat larger within-policy price changes

(consistent with having large discounts to attract bargain hunters). But the remaining non-

PD series are also highly volatile, exhibiting frequent and large within-policy price changes.

I conclude that the data continue to point to a large micro-macro volatility gap, which

requires a model of price setting that divorces product-level volatility from aggregate price

flexibility. The information friction modeled in the next section closes this gap by generating

noisy pricing that tracks market conditions imperfectly.

18A price level is “revisited” if the price returns to that level before a break occurs in the series.
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Table II: Price Discrimination Policies

One-to-flex Multi-rigid
PD Non-PD PD Non-PD

Fraction of all series (%) 10.2 18.3 29.5 30.0

Monthly frequency of policy changes (%) 11.6 21.3 9.1 14.8

Implied policy duration (months) 8.1 4.2 10.4 6.2

Freq. of weekly price changes within (%) 14.9 15.0 33.3 38.6

Size of price changes within (%) 11.8 9.1 15.3 12.2

Size of policy shift (%) 11.9 12.6 12.4 10.4

Policy cardinality 3 2 4 4

Note: Nielsen Retail Scanner data. Statistics for one-to-flex and multi-rigid series
that are price discrimination (PD) and non-price discrimination (Non-PD) series,
where PD series are defined as series in which a majority of policy realizations
have the maximum price equal to the modal price.

Break Test versus Filters How much do we gain by allowing for non-parametric changes

in the distribution of prices charged? Conceptually, the break test is more flexible in its

identification of breaks than filters that identify changes in a particular statistic (such as

the modal or the maximum price charged). This flexibility allows me to first identify breaks

in price series, and then investigate what aspects of the distribution change across breaks.

Simulations suggest that the break test is preferable: while each filter does particularly well

on specific data generating processes, the break test does well across different processes,

especially when the processes are characterized by random variation in the duration of both

regular and transitory prices.19 By using information about the entire distribution of prices,

the break test also has more accuracy in detecting the timing of breaks compared with

methods that focus on a single statistic. While the existing literature has focused more

on the median duration of regular prices, accurately identifying the timing of breaks is

particularly important for characterizing within-policy volatility and the responsiveness to

shocks. Statistics such as the number of distinct prices charged, the prevalence of the highest

price as the most frequently charged price, or the existence of time-trends between breaks

are also sensitive to the estimated location of breaks.

19The online appendix compares the performance of the break test to that of three filters in simulated
as well as actual data. The rolling model filter proposed by Kehoe & Midrigan (2015) gives results that are
closest to the break test in terms of both accuracy in simulated data and synchronization in actual data.
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The break test isolates the more persistent changes in pricing patterns from the transitory

pricing dynamics. But it itself does not introduce artificial rigidity in the measurement of

policy durations, which could be a concern. In simulations in which prices change flexibly

every three-to-four weeks, the test would conclude that policies last on average six weeks.

This duration is much lower than what I find in the data, where the large majority of policies

last at least 20 weeks. Hence, the method’s low power for very short-lived policies does not

appear to be a constraint for finding break points in the actual data.

2.2 Dynamics During the Great Recession

Making the distinction between different types of policies and between policy changes

and raw price changes is useful for disentangling the dynamics of inflation during the Great

Recession and its aftermath.

Inflation Figure 3a shows the aggregate dynamics, plotting the annualized monthly infla-

tion rate of the Nielsen sample compared with that of the CPI, and with crude oil price

inflation. The Nielsen inflation rate closely tracks the Food and Beverages CPI inflation rate

(the correlation between the two series is 96%; see also Beraja et al., 2018). Interestingly,

these two series started diverging significantly from the overall CPI inflation in October 2008,

at the height of the recession. They fell much more slowly and continued to diverge over

the sample period, with the exception of a period of more stable oil prices, between early

2012 and early 2014. Much of the gap between these series and the overall CPI inflation rate

reflects the fact that CPI inflation has tracked crude oil price inflation much more closely

than the Nielsen inflation rate (79% versus only 3% correlation). This is surprising since

history would predict Nielsen to be more correlated with oil, not the overall CPI basket.

But in this decade, Nielsen prices (and Food CPI more generally) were more rigid during the

recession and its immediate aftermath, and also more inflationary starting in 2011. Had oil

prices been less volatile, the missing disinflation puzzle of the Great Recession might have

been even more severe in the aggregate data.

Figure 3b decomposes the Nielsen inflation rate into the inflation rates for the three

types of products — single-price, one-to-flex and multi-rigid. There are stark differences in

the degree of state-dependence across the different policy types. All three inflation rates

moved largely in tandem at the beginning and the end of the sample, suggesting limited

divergence in “tranquil” times. But they diverged significantly in the crisis and its immediate

aftermath. During this period, the inflation rate for MRP products fell much more than for

SPP products. In fact, single-price products continued to raise prices throughout, while

MRP goods cut prices, and MRP inflation fell to a low of −2.7%. Hence, MRP goods, which
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Figure 3: Annualized inflation in Nielsen and the CPI versus crude oil

Note: Nielsen Retail Scanner and Bureau of Labor Statistics data. Crude oil inflation is

re-scaled for comparability. The shading marks the Great Recession.

likely face more volatile market conditions in general, also responded more aggressively to

the aggregate shocks during this volatile period.

Table III assesses these differences more formally, exploiting cross-sectional variation at

the national and state levels. First, I compute the monthly inflation rate at the module

level,20 for products of each policy type across all locations, and regress it on monthly

national unemployment, using the specification

πikt =
∑

h=1,2,3

(αh + βhUt)Dh + δi + γt + λit + εikt, (1)

where πikt is the inflation rate across products of policy type k in module i and month t, Ut

is the unemployment rate, Dk is a policy type dummy, δi, γt and λit are module, month, and

module-by-month fixed effects. The table reports results with and without the time fixed ef-

fects. The sensitivity of inflation to unemployment is significantly higher for MRP series than

it is for SPP series, and it is not driven by variation in specific modules over time. However,

the national data are exploiting essentially a single episode of high unemployment. So I also

report results using state-level inflation and state-level unemployment. I expand the sample

to include multiple chains in each state, and I keep data from the largest store within each

chain and state. This increases the sample size to more than nine million observations, and

offers more variation in both inflation and unemployment rates. Using state-level monthly

unemployment as a measure of local demand conditions, I regress monthly inflation πsikt —

now defined at the state-by-module-by-policy level — on local demand, also adding state,

20Nielsen groups products into roughly 1,000 product modules.
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Table III: Sensitivity of Inflation to Unemployment by Policy Type

National State-level
(1) (2) (3) (4)

Unemployment −0.046 − 0.015 −
(0.038) (.) (0.041) (.)

Unemployment x OFP −0.042 −0.089 −0.071∗∗ −0.075∗∗∗

(0.050) (0.049) (0.027) (0.027)

Unemployment x MRP −0.098∗ −0.146∗∗ −0.094∗∗∗ −0.099∗∗∗

(0.047) (0.045) (0.026) (0.027)

Module FE Yes - - -
Module x Month FE - Yes Yes -
State FE - - Yes -
State x Module x Month FE - - - Yes
Observations 254,600 244,820 9,626,039 9,079,654
R2 0.0608 0.5304 0.2148 0.5669

Note: Nielsen Retail Scanner Data. The first two columns report regressions
of module-policy inflation on national unemployment. Standard errors are in
parentheses, clustered at the module level. Two-way clustering by module and
month (omitted) reduces significance from the 1% to the 5% level for MRP se-
ries. The last two columns report regressions of module-policy inflation by state
on state-level unemployment as a proxy for local demand. Standard errors are
in parentheses, two-way clustered at the state and month level. All regres-
sions also include policy dummies and fixed effects, as indicated (not reported).
∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05.

module, and time fixed effects. The specification sweeps out the common variation coming

from the Great Recession, but nevertheless, MRP inflation responds significantly to local

unemployment, while SPP inflation has no meaningful response.

The heterogeneous responsiveness to the state of the economy documented here supports

the results of Gilchrist, Schoenle, Sim & Zakraǰsek (2017), who find that at the peak of the

crisis, firms operating in competitive markets lowered their prices significantly, relative to

firms operating in less competitive markets. The information-based theory presented in the

next section predicts this connection: firms that operate in more volatile or more competitive

markets choose more complex pricing policies and respond to shocks more aggressively, while

17



0%

20%

40%

60%

80%

100%

Ja
n
-0
6

Ja
n
-0
7

Ja
n
-0
8

Ja
n
-0
9

Ja
n
-1
0

Ja
n
-1
1

Ja
n
-1
2

Ja
n
-1
3

Ja
n
-1
4

Ja
n
-1
5

Ja
n
-1
6

Single-Price

One-to-Flex

Multi-Rigid

P
o
lic
y
R
e
al
iz
at
io
n
s

Month

(a) Policy realizations over time (b) Contributions of policy types to inflation

Figure 4: Policy choices and their contribution to inflation over time

Note: Nielsen Retail Scanner and Bureau of Labor Statistics data. Panel (a) plots the

type of policy realizations over time. Panel (b)plots the contribution of MRP and OFP

series to total inflation. The difference between total inflation (marked by the black line)

and the sum of MRP and OFP contributions is the contribution of SPP series.

firms that choose simpler policies also adjust more sluggishly to the state of the economy.

Importantly, these findings underscore the value of studying price data in its entirety,

without eliminating transitory price volatility. Transitory volatility is crucial to pinning

down the type of pricing policy of different products and, in turn, the type of policy is

correlated with how these firms respond to shocks, thereby affecting aggregate inflation

dynamics. Splitting the data by frequency of policy reviews — rather than by type of policy

— would generate a much less significant relationship between inflation and unemployment

across all groups, because it would mix the longer duration single-price series with the longer

duration multi-rigid series, which in fact have different cyclical properties.

Cyclical Policy Choice? So far, we have seen that MRP products reacted more aggres-

sively to the state of the economy during the recession, while SPP products barely responded.

In establishing this result I have assumed that products do not change their policy type over

time, so that they can be assigned once and for all to a particular category. However, both

the type and the statistics of the policies being realized may vary over time.

How important are changes in the types of policies being realized over time? As shown

in Figure 4a, there is some variation in the incidence of different types of policies, with MRP

realizations increasing slightly, at the expense of single-price policies. This trend supports

the notion that pricing has become more complex in the U.S. in recent decades.21 But the

21E.g., Nakamura et al. (2018) document an increase in the incidence of temporary sales over time.
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(a) Frequency of policy changes (b) Size of policy shifts

(c) Frequency of price changes (d) Size of price changes

Figure 5: Policy and price adjustment during the Great Recession

Note: Nielsen Retail Scanner Data. The top panels show time series for the deviations

from the trend in the fraction of policy changes over time (Panel a) and in the median

absolute shift in prices across policies (Panel b), by policy type. The shift is obtained by

computing the change across policies in the weighted average price. The bottom panels

show time series for the frequency of within-policy price changes (Panel c) and for the size

of within-policy price changes (Panel d), by policy type. These are seasonally adjusted

weekly figures, averaged to monthly values and filtered with a Baxter-King bandpass filter

with parameters 12, 96, 18.

increase is not monotonic. Surprisingly, the Great Recession saw a decrease in multi-rigid

policy realizations and an increase in single-price policies. The same pattern occurred in

2011, another period of heightened volatility. Over this decade, it seems that firms’ policies

have become more complex, except in periods of uncertainty, during which firms seem to

favor implementing simpler, single-price policies.

Nevertheless, the variation in the types of policies realized over time has only a modest

effect on inflation dynamics. The main driver of inflation is the volatility of the MRP series.

Figure 4b shows the contribution of SPP, OFP, and MRP series to aggregate inflation. The

MRP series are the most important not only because they have a large share in the overall
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number of series, but also because they feature the most volatile inflation. By contrast, SPP

series have only a marginal contribution to aggregate inflation dynamics.

Cyclical Policy Adjustment? How do the prices within the different policy types adjust

to generate the inflation dynamics seen in the aggregate? For each policy type, I decompose

inflation dynamics into the contribution coming from policy adjustments (frequency size of

shifts across policies) and from within-policy price changes. During the recession, adjust-

ments overwhelmingly reflect across-policy rather than within-policy changes. As shown in

Figure 5, the key adjustment margin is the frequency of policy changes, which rose substan-

tially for all product types. This supports the hypothesis of at least partial state-dependence

in policy adjustment. The rate of policy changes increased particularly sharply for single-

price products, with a 20 percent increase at the height of the recession. But this increase

did not translate into much flexibility in the price index for these firms, which, as we have

seen, had a muted response to the Great Recession.

The bottom panels of Figure 5 document the patterns over time for within-policy volatil-

ity. The percent changes in the within-policy rates of price adjustment are about an order

of magnitude smaller than changes in the rate of policy adjustments. Likewise, the absolute

size of within-policy price changes did not change significantly, decreasing by less than five

percent. A possible explanation for these patterns is that the heightened uncertainty associ-

ated with the Great Recession led firms to keep revising their pricing plans instead of making

them more complex. This interpretation is bolstered by the increase in the rate of policy

adjustments that took place in 2011, which was another period of increased uncertainty due

to the Euro zone crisis, the U.S. fiscal policy crisis, and rising and highly volatile oil prices.22

3 Theory

The empirical evidence supports a theory of price setting that generates coarse, infre-

quently updated price plans. In this section, I develop a theory of information acquisition

that can generate such price plans endogenously.

3.1 The Agents

The economy consists of a fully informed representative household, a continuum of

information-constrained producers, and a government that follows an exogenous policy.

22This evidence is also consistent with that of Anderson, Malin, Nakamura, Steinsson & Simester (2017),
who find that an increase in oil prices in the 2007-2009 period had a significant effect on the frequency of
regular prices posted by a particular retailer. Berger & Vavra (2018) and Nakamura et al. (2018) document
countercyclicality in the frequency of regular price changes in the CPI in recent decades; here I emphasize
the role of volatility even in the absence of a recession.
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Households The household’s problem is standard. The household has full information and

chooses paths for consumption, labor supply, money, and bonds to solve

max
{Ct,Cit,Hit,Mt,Bt}

E0

∞∑
t=0

βt
[
C1−σ
t

1− σ
− 1

1 + ν

∫ 1

0

H1+ν
it di

]
(2a)

Mt +Bt ≤Mt−1 + (1 + it−1)Bt−1 +

∫ 1

0

WitHitdi+

∫ 1

0

Πitdi+ Tt − Pt−1Ct−1, (2b)

PtCt ≤Mt, (2c)

Ct ≡
[∫ 1

0

[AitCit]
(ε−1)/ε di

]ε/(ε−1)

, (2d)

where Ait is a good-specific preference shock, Hit is the differentiated labor supplied to each

firm i, Wit is the nominal hourly wage of firm i, Πit is the dividend received from firm i,

Tt is the net monetary transfer received from the government, Bt is the amount of risk-free

nominal bonds held in the period, it is the risk-free nominal interest rate on these bonds,

Mt is money holdings, β ∈ (0, 1) is the discount factor, ε > 1 is the elasticity of substitution,

σ > 1 is the constant relative risk aversion parameter, ν ≥ 0 is the inverse of the Frisch

elasticity of labor supply, and Pt ≡
[∫ 1

0
(Pit/Ait)

1−ε di
]1/(1−ε)

is the aggregate price index.

The optimality conditions are standard and shown in the online appendix.

Government For simplicity, the government follows an exogenous policy. The net mone-

tary transfer in each period is equal to the change in money supply, Tt = M s
t −M s

t−1, where

the log of money supply evolves according to logM s
t = logM s

t−1 + ηt, ηt
i.i.d.∼ hη.

Firms A continuum of monopolistically competitive firms produce differentiated goods

using the production function Yit = H
1/γ
it /Ait, where Hit is the differentiated labor in-

put, Ait is the firm-specific inverse of productivity, and γ ≥ 1 captures the returns to

scale in production. The stochastic variable Ait represents the effort required to pro-

duce the good and also increases the utility from consuming it.23 The law of motion

for this quality term is logAit = logAi,t−1 + ξit, with ξit
i.i.d.∼ hξ. Excluding informa-

tion costs, nominal profit is Πit = PitYit − WitHit. The profit maximizing full informa-

tion flexible price is Xit ≡ AitMt/Y
∗, where Y ∗ is the associated equilibrium output,

Y ∗ ≡ [(ε− 1)/(εγ(1 + ν))]1/(σ+γ(1+ν)−1).24

23The assumption that this term enters both the household’s demand and the firm’s cost implies that
the firm’s profit is shifted in the same way by the aggregate nominal shock and by this idiosyncratic shock,
which enables a reduction in the state space of the problem. See also Midrigan (2011) and Woodford (2009).

24The online appendix derives this and all subsequent results that are omitted here for brevity.
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3.2 The Firms’ Information Problem

Monitoring the state of the economy is costly for firms, but they can choose how much

attention to pay to market conditions. Each firm chooses a policy that specifies a menu of

prices and a rule that determines which price to charge in each period and state of the world.

How many prices are on the menu and how sensitive the rule is to market conditions depend

on the firm’s willingness to acquire more information in order to make its prices track the

full information target price more closely. Moreover, motivated by the evidence of breaks

in product-level price series, I assume that firms can revise their policies, subject to a fixed

cost. This means that in addition to deciding which price to charge in each period, firms

must also decide whether or not to undertake a policy review. How much information about

market conditions to acquire in order to make this decision is also their choice, depending

on how valuable it is to have accurately-timed policy reviews.

Objective Each firm maximizes its discounted expected profits net of the monitoring and

policy review costs. The fixed cost of policy reviews makes the firm’s problem dynamic.

Let πit denote a firm’s per-period profit in units of marginal utility, excluding information

costs. Profit in the economy with costly information can be written as a function of the gap

between a firm’s actual price and the frictionless target Xit, and of the gap between actual

output and the frictionless level of output Y ∗:

πit = (Y ∗)1−σ

[(
Pit
Xit

)1−ε(
Yt
Y ∗

)2−ε−σ

− ε− 1

εγ(1 + ν)

(
Pit
Xit

)−εγ(1+ν)(
Yt
Y ∗

)γ(1+ν)(1−ε)
]
, (3)

where aggregate output relative to frictionless output depends only on the joint distribution

of prices and targets in each period, after firms have made all their decisions:

Yt = Y ∗
[∫ 1

0

(Pit/Xit)
1−ε di

]−1/(1−ε)

. (4)

The information-constrained firm chooses a pricing and reviewing policy that solves

max
{Pit,Ipit,Irit,δrit}

E0

∞∑
t=0

βt [πit − θpIpit − θrIrit − κδrit] , (5)

where Ipit is the quantity of information acquired in period t in order to make the pricing

decision, with unit cost θp > 0, Irit is the quantity of information acquired to decide whether

or not to review the policy, at a unit cost θr > 0, δrit is equal to 1 if the firm reviews its

policy in period t and 0 otherwise, and κ > 0 is the fixed cost associated with a policy

review. Payment of this fixed cost enables the firm to obtain complete information about
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Figure 6: Sequence of events in each period of the model.

the economy at the time of the review, as in Reis (2006) and Woodford (2009).25

Monitoring Market Conditions Figure 6 presents the timeline in each period. The firm

monitors the evolution of market conditions using two costly signals that it observes in each

period: a review signal, which is used to decide if the policy has become obsolete such that it

is worthwhile to pay the fixed cost to redesign it, and a price signal, which is used to decide

which price, from the menu of prices specified by the current policy, the firm should charge in

the period. We can interpret these two signals as the information acquired by two different

managers in the firm: a manager at headquarters, monitoring the overall performance of

the firm’s policy, and a “floor” manager, monitoring the day-to-day fluctuations that might

warrant temporary price adjustments. The cost of each signal is linear in Shannon’s (1948)

mutual information between the signal and the state of the economy. Mutual information

measures the reduction in uncertainty about the state of the economy achieved by an opti-

mally designed signal. Uncertainty is measured by entropy, and the signal is optimal for the

decision that is based on its information content. More informative signals—which reduce

uncertainty about the optimal decisions more—are more costly. Hence, for each of its two

decisions, the firm faces a trade-off between closely tracking the action warranted by current

market conditions and economizing on information expenditure.

For tractability, there is no free memory—including regarding the passage of time—and

all information, including that about past events or actions, is subject to the unit costs θr

and θp for the review and pricing signals respectively. There is also no free transmission of

information between the managers who make the two decisions.26

The Firm’s Choices Given this specification, I now formalize each firm’s choice of signals

and define the information cost of each choice. Consider a firm undertaking a policy review

in an arbitrary period t. Let ω̃t denote the state of the economy at the time of the review,

25The assumption that the review cost is fixed and yields complete information simplifies the model and
may be rationalized via economies of scale in the review technology.

26The assumptions that information from memory is as costly to process as new information, and that
keeping track of time is also just as costly simplify the firm’s problem and the resulting optimal policy
considerably. The implications of this equal-cost assumption are discussed in more detail in the appendix.
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after the realization of that period’s shocks. This “pre-review” state includes the current

target prices as well as the history of shocks, signals and decisions through period t − 1,

for all firms in the economy. Let V t (ω̃t) be the firm’s maximum attainable value, upon

conducting a review, and let Vt (ω̃t) be the continuation value under the policy in effect at

the beginning of the period. The firm’s decision of whether or not to undertake a review

depends on information about the difference between these two values. Extending the results

of Woodford (2009), information about this difference is acquired in the form of a binary

signal indicating whether or not to review the policy. Such a signal that directly indicates

the action to be taken ensures that the firm does not spend resources on any extraneous

information that is not directly used in its decision.

Formally, the firm’s review policy can be recast as the choice of (i) a sequence of hazard

functions {Λt+τ (ω̃t+τ )}τ≥1, indicating the probability of a review in each future period and

state of the world, and (ii) an unconditional frequency Λt with which the firm anticipates

undertaking reviews over the expected life of the policy. The cost of this review policy each

period is expected to be θrIrt+τ . Using the definition of mutual information,27

Irt+τ = Et
{
I
(
Λt+τ (ω̃t+τ ) ,Λt

)}
, ∀τ > 0, (6a)

I
(
Λ,Λ

)
= Λ

[
log Λ− log Λ

]
+ (1− Λ)

[
log(1− Λ)− log(1− Λ)

]
. (6b)

At the time of its review, the firm also chooses its pricing policy, which determines

how prices are set between reviews. The firm does not have to choose a single price to

charge until the next review, as in Calvo or menu cost models; nor does it have to choose

a pre-determined path, as in Reis (2006) or Burstein (2006). Rather, it can choose a menu

of prices and a state-dependent rule for deciding which price to charge when. Let ωt+τ

indicate the state that is relevant for the firm’s pricing decision in period t + τ , after firms

have made their review decisions. This “post-review” state consists of the pre-review state

ω̃t+τ and the review decisions of all firms in the economy. As in the case of the review

policy, the signal structure directly indicates the action to be taken, which in this case is

the price to be charged. Hence, the price setting policy consists of three objects: Pt, f t (p),

and {ft+τ (p|ωt+τ )}τ≥0, namely (i) the set of log prices in the menu, (ii) the unconditional

discounted frequency with which the firm expects to charge the prices in this set until the

next review, and (iii) the sequence of state-dependent distributions from which a price is

27It is convenient to exploit the symmetry of the mutual information function to write the amount
of information acquired in terms of the relative entropy between the conditional and the unconditional
probabilities that characterize the review policy, rather than in terms of the relative entropy between the
prior and posterior state of the world, conditional on receiving the signal.
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drawn in each period, conditional on the state.28 These conditional distributions govern how

closely prices track market conditions in real time. The expected cost of the information

needed to implement this pricing policy is θpIpt+τ in each period, where, again using the

definition of mutual information, this cost is linear in the distance between the conditional

and the unconditional frequencies,

Ipt+τ = Et
{
I
(
ft+τ (p|ωt+τ ) , ft (p)

)}
, ∀τ ≥ 0, (7a)

I
(
f, f
)

=
∑
p∈P

f (p|ω)
[
log f (p|ω)− log f (p)

]
. (7b)

The Firm’s Policy The policy chosen at the time of a review in some period t attains the

maximum continuation value

V t (ω̃t) = Et

{
Πt (ωt) +

∞∑
τ=1

βτΓt+τ (ω̃t+τ−1)Wt+τ (ω̃t+τ )

}
, (8)

Wt+τ (ω̃t+τ ) ≡ [1− Λt+τ (ω̃t+τ )] Πt+τ (ωt+τ ) + Λt+τ (ω̃t+τ )
[
V t+τ (ω̃t+τ )− κ

]
(9)

− θrI
(
Λt+τ (ω̃t+τ ) ,Λt

)
,

where EtΠt+τ (ωt+τ ) denotes the average profit that the firm expects in t+ τ given its pricing

policy, net of the cost of the price signal, and where, if the policy survives to period t+τ , the

firm pays for the review signal in that period, and then either keeps its policy unchanged,

or pays the fixed cost to review its policy and obtain the new maximum continuation value.

The average per-period profit net of the cost of the pricing signal is given by29

Πt+τ (ωt+τ ) ≡
∑
p∈Pt

ft+τ (p|ωt+τ )
{
π(p;xt+τ ;Yt+τ )− θp

[
log ft+τ (p|ωt+τ )− log f t (p)

]}
, (10)

and the survival probability is given by Γt+1 (ω̃t) ≡ 1 and, for τ > 1,

Γt+τ (ω̃t+τ−1) ≡
τ−1∏
k=1

[1− Λt+k (ω̃t+k)] . (11)

28For expositional purposes and foreshadowing later results, the set of prices is countable, although nothing
in the specification rules out policies featuring continuous price distributions. Note that since knowledge
regarding the passage of time is assumed to be available only through the signals themselves, both the
pricing decision and the review decision are defined relative to two single discounted frequencies f t (p) and
Λt, indexed by the time of the review and applicable in all periods until the next review.

29The flow profit π defined in (3) is now redefined in terms of the log price p and the log target price x.
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3.3 The Optimal Policy

Consider a firm that reviews its policy in period t. I shall index the firm’s policy objects

by t to indicate dependence on the aggregate state at the time the policy was reviewed. Let

Φ̃ and Φ denote the relevant parts of the aggregate state—namely the joint distributions of

normalized prices and targets—at the time of some subsequent review decision and pricing

decision respectively. The implementation of the firm’s policy depends on both idiosyncratic

conditions (summarized by the firm’s normalized target price) and on these distributions.

Each time it reviews its policy, the firm learns the complete state of the economy. There-

fore, its decisions can be expressed as a function of the aggregate state and of idiosyncratic

variables that are normalized by the state at the time of its last review. Specifically, for

a firm that last reviewed its policy in period t, I define its normalized pre-review target in

period t + τ as ỹt+τ ≡ xt+τ − xt. If the firm undertakes a review in period t + τ , its

normalized target is reset to 0; otherwise, its normalized post-review target is yt+τ = ỹt+τ .

Finally, I denote by qt+τ ≡ pt+τ − xt the firm’s normalized price.

The Optimal Pricing Policy. The probability that a firm that reviewed its policy in period

t will charge normalized price q in aggregate state Φ when facing a normalized target y is

ft (q|y,Φ) =
f t (q) exp

{
π(q,y,Y (Φ))

θp

}
∑

q̂∈Qt f t (q̂) exp
{
π(q̂,y,Y (Φ))

θp

} . (12)

where Qt is the set of prices in the menu (possibly a singleton) and f t is the unconditional

discounted frequency with which the firm expects to charge these prices until the next review.

The Optimal Review Policy. The probability of a policy review in aggregate state Φ̃, given

a normalized pre-review target ỹ, satisfies

Λt(ỹ; Φ̃)

1− Λt(ỹ; Φ̃)
=

Λt

1− Λt

exp

{
1

θr

[
V (Φ̃)− κ− Vt

(
ỹ; Φ̃

)]}
, (13)

where Λt is the unconditional discounted frequency of reviews, Vt is the continuation value

under the current policy, and V is the maximum continuation value upon review.

The Frequency of Reviews. The optimal discounted frequency of policy reviews is

Λt =
Et

{∑∞
τ=1 β

τΓt

(
ỹτ−1; Φ̃t+τ−1

)
Λt(ỹτ ; Φ̃t+τ )

}
Et

{∑∞
τ=1 β

τΓt

(
ỹτ−1; Φ̃t+τ−1

)} , (14)

where Γt(ỹ
τ ; Φ̃t+τ ) is the probability that the policy chosen in period t continues to apply τ+1
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periods later, as a function of the sequences of targets and aggregate states, with Γt(0; Φ̃0) ≡ 1

(the policy lasts at least one period), and, for τ > 0,

Γt(ỹ
τ ; Φ̃t+τ ) ≡

τ−1∏
k=1

[
1− Λt(ỹk; Φ̃t+k)

]
. (15)

The Frequency of Prices. The discounted frequency with which the firm expects to set the

normalized price q is a discounted average of the conditional probabilities of charging this

price under different states, weighted by the probability of reaching these states:

f t(q) =

Et

{
∞∑
τ=0

βτΓt(ỹ
τ ; Φ̃t+τ )ft(q|yτ ,Φt+τ )

}
Et

{
∞∑
τ=0

βτΓt(ỹτ ; Φ̃t+τ )

} . (16)

The Optimal Pricing Support. The set Qt is the optimal support of the pricing policy if

and only if Zt(q) ≤ 1 for all q and Zt(q) = 1 for all q such that f t(q) > 0, with

Zt(q) ≡ Et


∞∑
τ=0

βτΓt(ỹ
τ ; Φ̃t+τ )

exp
{

1
θp
π(q; yτ ;Y (Φt+τ ))

}∑
q′∈Qt

f t(q
′) exp

{
1
θp
π(q′; yτ ;Y (Φt+τ ))

}
 (17)

where the pricing policy satisfies equations (12) and (16). The associated probability distri-

bution satisfies the fixed point f t (q) = f t (q)Zt (q) , ∀q ∈ Qt.

Discussion The firm’s pricing policy is defined by equations (12), (16), and (17). Since

all information about the state is equally costly, the firm chooses a signalling mechanism

that directly conditions on its target and on the expected output level, which are sufficient

statistics for idiosyncratic and aggregate conditions. Moreover, since the firm can revise its

policy, the pricing problem becomes a static problem over the distribution of states that it

expects to face until the next review. This means that the solution inherits the properties

of solutions from the static rational inattention literature. In particular, it is worth recalling

three important features of an equation of the form (12): First, it exhibits partial state-

dependence in that the probability of setting a particular price in a particular state is high,

relative to the average probability of charging other prices in that state, if the profit from

doing so is high relative to the average profit that the firm can expect in this state across all

the prices on the menu. Second, the state-dependence is stochastic. Regardless of the target

price, there is positive mass on all prices for which f t(q) > 0. This implies not only that the

firm can make considerable mistakes in pricing, but also that the price may change from one

period to the next even if there is no change in the fundamentals. Third, the information
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cost θp governs the degree of noise in the solution. The higher the cost, the flatter is the

conditional distribution in equation (12), reducing pricing accuracy.

Equation (16) differs from the static rational inattention solution. It represents the

discounted frequency with which the firm anticipates that it will charge different prices from

its current policy, with future states mattering less for the firm’s choice of a policy today.

The condition for the optimality of the support defined in equation (17) is crucial in the

context of a potentially discrete solution. The value Zt (q) represents the value of charging

the price q relative to the value of charging other prices q′ ∈ Qt, on average, across all possible

targets y that the firm expects to encounter until its next review. The optimal support is

chosen so as to equate this value across all prices in the support. Moreover, it requires that

charging any other price would yield a weakly lower average value. If one can find a set of

prices that satisfy the conditions in (17), then this set characterizes the uniquely optimal

solution at the information cost θp.

The firm’s review policy is defined by equations (13) and (14). The conditional probability

of a policy review has the same form as the probability of a price change derived by Woodford

(2009), generalizing it to the general equilibrium model with pricing policies consisting of

more than one price between reviews. The review decision depends on the firm’s own pre-

review normalized target, and also on expected aggregate dynamics. When deciding whether

or not to review its policy, the firm considers the gain from undertaking a review relative to

the cost of the review κ. The dependence of the review decision on the state is imperfect: In

order to economize on information costs, the optimal review signal neither rules out a review

nor indicates it with certainty. When the cost of information θr is low, the firm can afford

to acquire more information in order to make its review decision, and hence this decision

becomes increasingly precise.

Equilibrium A stationary equilibrium is a set of stochastic processes Λt(ỹ; Φ̃), Λt, Vt(ỹ; Φ̃),

V t, f t(q), ft(q|y,Φ), Qt that satisfy optimal firm behavior, where the relevant aggregate

states are the joint distributions of pre-review and post-review prices and targets.

The steady state with idiosyncratic shocks is characterized by a set of time-invariant

objects Λ(ỹ), Λ, V (ỹ), V , Q, f(q), and f(q|y) that satisfy the conditions above for the case of

zero aggregate shocks in each period, and stationary joint distributions of normalized targets

and prices, pre- and post-reviews. The steady-state algorithm solves the firm’s pricing policy

between reviews by incorporating algorithms based on the information theory literature,

namely Arimoto (1972), Blahut (1972), Csiszár (1974), and Rose (1994). Given the steady

state solution, dynamics are obtained using a linear approximation to the dynamic equations

of the model around the steady state, for the case of small aggregate shocks. I use the
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method of Reiter (2009) with Klein (2000) numerical Jacobians code. For tractability, I

restrict the degree to which firms’ choices of a review policy and a pricing support depend

on the aggregate state and the number of firm cohorts in the equilibrium distributions.30

4 Numerical Results

The model is parameterized at the weekly frequency, targeting the duration, discreteness,

and volatility of pricing policies identified in micro data.

4.1 Pricing Policies in the Model

Table IV shows the parameterization of the baseline single-price and multiple-price mod-

els. Most parameters are common. The parameters that determine the preferences of the

representative consumer and the properties of the production function are set to values

commonly used in the literature. The elasticity of substitution is ε = 5. The elasticity of

inter-temporal substitution is σ = 2.7. The production function features decreasing returns

to scale (γ = 1.5). These parameters determine the curvature and asymmetry of the profit

function, which in turn affect the losses associated with mispricing. The volatility of id-

iosyncratic shocks and the information costs are chosen to target the frequency of policy

reviews, the median shift in prices across policies, the cardinality of pricing policies, the

frequency of the modal price per policy, and the frequency and size of within-policy price

changes. Although these parameters are jointly optimized to target the pricing moments,

I indicate in the table the statistics that are relatively more sensitive to variations in each

parameter. All parameters play a role in influencing firms’ incentives to acquire information,

but the volatility of the shocks plays the biggest role, with small changes in the size of shocks

affecting both how much the firm spends on signals and how frequently it resets its policy.

The first key numerical result is that pricing policies feature discrete prices. The solution

is discrete even though the model is infinite-horizon and with Gaussian shocks. Figure 7

shows a sample price series, along with the target price that would be charged in the full

information, flexible price benchmark. The shading marks the timing of policy reviews as

identified by the break test. Consistent with the data, the theory generates large, transitory

volatility among a small number of infrequently updated price levels. The firm’s actual price

tracks the target price well, especially in the medium-run, although in the short run the firm

often makes large mistakes, reflecting noise in both its reviewing and pricing decisions.

30Costain & Nakov (2011) also use this approach to solve a general equilibrium monetary model with
heterogeneous firms and state-dependent price setting. As they note, the advantage of this method is that it
allows for a solution that is non-linear in the idiosyncratic shocks, while maintaining linearity in the (small)
aggregate shocks.
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Table IV: Baseline Parameterization

Parameter Symbol Values Explanation/Target

Discount factor β 0.9994 Annual discount rate of 3%

Elasticity of substitution ε 5 Full info markup of 25%

Elast. of inter-temporal subst. σ 2.7 Strategic complementarities

Inverse Frisch elasticity ν 0 Indivisible labor

Inverse production fn. exponent γ 1.5 Decreasing returns to scale

Fixed cost of policy review κ 1.65; 1.8 Frequency of policy reviews

Cost of review signal θr 4 Price shift across policies

Cost of price signal θp > 0.13; 0.1 Cardinality of policy

Std. dev. of idio. quality shock σξ 0.016; 0.028 Size of price changes

Note: Where there are two values, the first indicates the SPP parameterization, and the
second indicates the MRP parameterization.

The second key numerical result is that the model can generate both single-price policies

and multiple-price policies, depending on parameter values. In particular, there exists a

finite threshold θ̄p such that for costs of the price signal below this level, the firm always

chooses to acquire the pricing signal and to implement a policy with multiple prices between

reviews. The level of this threshold depends on the distribution of target prices that the firm

expects will be realized between reviews. This distribution is shaped by the distribution

of exogenous shocks and by how quickly the chosen review policy triggers a review when

the target price deviates too much from the current policy. Larger exogenous shocks or less

frequent reviews that allow shocks to accumulate both result in a higher threshold and make

complex pricing policies more likely.

Table V shows the model’s ability to match statistics from the micro data for both SPP

and MRP series.31 For the MRP data, large shock volatility generates policies with four

distinct price levels, and large price changes both within and across policies. I target more

moments than there are free parameters, so the match is imperfect. Nevertheless, the model

captures very well the volatility and discreteness seen in the data. The discrete solution for

the firm’s pricing policy yields a moderate frequency of price changes between reviews of

31I target statistics for the multi-rigid series excluding the price discrimination series, since the model
does not feature a price discrimination motive. In the interest of space, I omit results for OFP series, whose
properties are between those of SPP and MRP series; OFP pricing patterns are generated by changing the
cost θp so as to generate a disproportionate mass at a single price in the distribution.
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Figure 7: Simulated price series

Note: Shading marks the policy reviews identified by the break test.

39.4% versus 38.6% in the data. As in the data, policies feature one dominant rigid price,

with the frequency of the modal price reaching 66% on average, versus 58% in the data.

How well do the information-constrained firms do, relative to a hypothetical firm that

faces no information frictions in this economy? In the model, MRP firms achieve about 90%

of the profits they would achieve if they had full information. They spend approximately

5.2% of their revenues on monitoring market conditions and updating their policies, most of

which is spent on the fixed cost of policy reviews.

Since they are quite uncertain about their target price, MRP firms set prices that are

4.5 percentage points higher than the prices that would be set by fully informed firms in the

same environment. Overpricing—as insurance against mistakes—reflects the fact that the

firm stands ready to meet whatever demand it faces at its current price. This makes having

prices that are too low much more costly than having prices that are too high, relative to

the full information optimum.

For the single-price firms, I lower the volatility of idiosyncratic shocks to match the

smaller size and frequency of price changes. I also assume that redesigning single-price

policies is slightly cheaper (κ = 1.65 versus 1.80 for MRP firms). Since they face less

volatility in their target price, SPP firms have lower incentives to acquire information between

reviews. As a result, the threshold unit cost for the price signal θ
p
, which determines the

desirability of having a multiple price policy, is much lower (0.13 versus 0.42 for the MRP

parameterization). Overpricing is also less severe for these firms: Prices are on average 2.9

percentage points higher than the prices that would be set by fully informed firms. Lastly,

profits are quite high (91% of the profits they would achieve if they had full information)

even though information expenditure is less than half than that of the MRP firms.
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Table V: Pricing Policies in the Model

Single-price Multi-rigid (non-PD)

Data Model Data Model

Targets

Cardinality of the pricing policy 1 1 4 4

Weekly frequency of policy reviews (%) 1.8 1.8 3.4 3.4

Shift in prices across policies (%) 8.5 8.5 10.4 10.8

Weekly freq. of modal price (%) 100 100 58.1 66.3

Weekly frequency of price changes within (%) − − 38.6 39.4

Size of price changes within (%) − − 12.2 11.1

Information expenditure

(% of revenues)

On reviews 1.8 3.0

On review signal 0.7 0.6

On price signal 0.0 1.6

Total info expenditure 2.5 5.2

Profits, excluding info costs (% FI) 91.2 90.0

Threshold cost θ̄p for acquiring price signal 0.13 0.42

Amount by which prices exceed FI price (%) 2.9 4.5

Note: Data versus baseline model results.

Figure 8 shows the steady state hazard functions for policy reviews for the MRP and SPP

firms, and the associated steady state distributions of pre-review and post-review normalized

target prices. Overall, the data favor a parameterization in which both types of firms spend

relatively little on making an accurate review decision. Both hazard functions are very flat

for much of the relevant state space. This implies that, all else equal, firms are slow to reset

their pricing policies. Nevertheless, mispricing becomes increasingly costly when prices fall

too far below the optimum. As a result, the hazard functions steepen much faster when

prices fall behind, so that firms are quicker to raise prices than to cut them. The SPP

hazard function displays a particularly strong steepening, since these firms cannot respond

by adjusting prices between reviews.
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Figure 8: Model outcomes

Note: Model results. (a) Distribution of pre-review targets. (b) Hazard function for policy

reviews. (c) Distribution of targets post the review decision. The figures correspond to

the SPP and MRP parameterizations shown in Table V.

4.2 Interdependence

To illustrate the interaction between the firm’s pricing policy and its review policy, Ta-

ble VI presents results for alternative parameterizations of the MRP series.32

Cost of Price Signal First, consider the case of a high cost of the price signal, θp, keeping

all other parameters at the values of the MRP parameterization. The firm reduces the

amount of information obtained to make its pricing decision, and instead it acquires a more

precise review signal. For a high enough value of θp, it eliminates the price signal altogether

and charges a single price between reviews. Having a more accurate timing of reviews allows

the firm to undertake reviews less frequently (Λ̄ declines). Hence, the firm partially makes up

for its more costly price signal by spending more resources on its review policy. Nevertheless,

it achieves lower profits and overprices more, since its choice of policy is more constrained.

Cost of Review Signal Next, consider an increase in θr, the cost of monitoring market

conditions to decide whether or not to undertake a policy review. The firm now chooses

a less informative review signal, which implies a flatter hazard for policy adjustment. To

compensate for the increased inaccuracy in making this decision, the frequency of reviews

increases, and the threshold θ
p

below which multiple-price policies are chosen also increases,

making MRP policies more likely. Overall, the firm can compensate such that profits are

not significantly affected.

Cost of a Review Finally, consider an increase in κ, the fixed cost of policy reviews.

The firm undertakes reviews less frequently, and instead acquires more informative signals,

32See Alvarez & Lippi (2014) for a menu cost model discussion of how structural parameters affect pricing.
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Table VI: Alternative Parameterizations for MRP Series

Base High θp High θr High κ

Policies

Cardinality of the pricing policy 4 1 5 5

Weekly frequency of policy reviews (%) 3.4 2.8 4.4 2.8

Shift in prices across policies (%) 10.8 12.9 9.3 11.4

Information expenditure

(% of revenues)

On reviews 3.0 3.3 4.7 3.2

On review signal 0.6 1.4 1.7 0.9

On price signal 1.6 − 1.5 2.8

Total info expenditure 5.2 4.6 6.4 6.9

Profits, excluding info costs (% FI) 90.0 85.2 90.0 89.1

Amount by which prices exceed FI price (%) 4.5 4.9 4.5 5.0

Note: The first columnshows the baseline MRP parameterization. Each subsequent
column considers a single parameter change: θp = 0.42, which is the threshold in-
formation cost for multiple-price policies; θr = 20, which generates a near-constant
probability of policy reviews; and κ = 3.6, which also generates a very flat hazard
function for policy reviews.

especially on pricing. It makes its review decision slightly more precise, and it designs a more

complex and more accurate pricing policy. Overall, the level of spending on information

increases. Profits (excluding information costs) decline, but not as much as they would if

the firm had exogenously given signals. Overpricing also increases, since the firm now resets

its policy less frequently, and hence there is more risk of prices becoming more stale between

reviews.

Overall, the results suggest that constraints on firms’ ability to design complex pricing

policies may be more costly (generating lower profits and higher average prices for consumers)

than having higher costs associated with the review policy, which the firm can counteract by

adjusting its pricing policy between reviews. This suggests that within-policy price flexibility

is a valuable way for firms to respond to shocks, a point I return to in the next section.
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4.3 Discreteness

Central to obtaining a discrete solution is the shape of the distribution of target prices

that the firm expects to encounter until the next review. This distribution is the key object

of attention for the firm. Importantly, unlike in other rational inattention models, it is

endogenous, since it is shaped by the firm’s review policy which determines in which states

of the world the current policy continues to apply. The review policy is more likely to trigger

a review when the firm’s target price has drifted far from the current menu of prices. Hence,

the firm can afford to pick a small menu of prices, and then occasionally reset it. Since the

profit function is asymmetric, the probability of a policy review is also asymmetric. This

makes the firm more likely to reset its policy when its prices have become too low. This

yields a distribution of post-review target prices whose support–while unbounded–is skewed

and has negative excess kurtosis. I find numerically that these effects are strong enough to

generate a discrete support for a finite cost of the price signal.

Given the optimality of a discrete support, the cost of the price signal θp then determines

how many prices the firm chooses to charge between reviews, and how closely the probability

of charging each price is tied to market conditions. Figure 9 illustrates how the pricing policy

evolves in partial equilibrium, as a function of the cost of the price signal θp, keeping the

review policy fixed. The panels plot the evolution of Z (q) defined in equation (17) as a

function of q, for decreasing levels of the information cost. For a high information cost, the

solution yields a singleton, Q = {q}. The function Z is below 1 everywhere except at q.

As the information cost falls, the function Z increases for all points around q. However,

the growth occurs at a much faster rate in the range that will contain the new mass point.

Eventually, Z > 1, triggering the addition of a new mass point to the optimal support.

Moreover, there is no other fast-growing area over the entire range of q, such that the

transition from the single-price to the multiple-price policy occurs with the growth of a

single new mass point. This is due to the asymmetry of the problem: new mass points are

added one by one to the support, spreading out over a wider and wider range of possible

prices. In a setup that retains the skinny tails of the distribution of states relative to the

objective function (such that discreteness remains optimal) but instead employs a symmetric

objective and a symmetric distribution of states, the singleton price would “break” into two

and be replaced by a price below q and a price above q simultaneously. As the cost of

information is further reduced, a low price and a high price would continue to be added

symmetrically. In the quadratic-normal setup, for any finite information cost, Z (q) = 1 for

all q ∈ R, as the optimal price support “breaks” to the entire real line immediately.33

33A setup in which the state is drawn from a distribution with bounded support yields a signal with a
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Figure 9: Growth of new mass points in the price distribution.

Note: The panels plot the function Z (q)−1 as the cost of information θp is reduced. The

points of support are shown as multiples of q, the price that would be charged under the

single-price policy.

Lastly, the signal endogenously allocates more attention to the regions of the state space

with the potential to generate larger losses from inaccuracy. Asymmetry in the objective

function implies that more attention needs to be allocated to the steeper part of the objective,

since that part generates larger losses from deviating from the full-information optimum.

Furthermore, depending on the distribution of shocks, attention is allocated first to the

areas with more mass, and negative excess kurtosis requires less attention in the tails.

discrete support, regardless of the shape of the objective function, as discussed by Fix (1978), Matějka (2016)
and Matějka & Sims (2010). The analysis in this paper is complementary to this work, in that I demonstrate
how discreteness can arise in an infinite horizon model with Gaussian shocks.
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5 Implications

What does the theory imply for the responsiveness of prices to shocks, and how does this

responsiveness change if the environment becomes more volatile? In this section, I address

these questions, connecting the model’s micro predictions to implications for the dynamics

of aggregate inflation.

5.1 Adjustment to Aggregate Shocks

Figure 10a shows how the MRP and SPP price indices respond to a contraction in

aggregate nominal spending. Both series decline gradually, reflecting imprecision in pricing

decisions. But MRP prices adjust faster. Since they face a higher idiosyncratic volatility,

they acquire more information about market conditions and, as a result, they are also more

responsive to the aggregate shock. This divergence is consistent with the patterns seen in the

data during the Great Recession, when the MRP series adjusted prices more aggressively.

How much of the difference between the MRP and the SPP responses comes from the

fact that MRP goods update their policies more frequently, and how much from the fact that

they adjust prices between policy reviews? This split informs the question of the relevance

of transitory price volatility for aggregate flexibility. The consensus that has emerged in the

recent pricing literature is that such volatility does not meaningfully contribute to aggregate

price flexibility. Consider filtering out the within-policy price volatility of the MRP series,

and targeting only the frequency of policy reviews and the shift in prices across policies.34

The resulting impulse response function, labeled ‘Filtered’ in the figure, is initially less

responsive than the benchmark MRP index. But over time, it reaches and then overshoots

the MRP line. The area between the two lines shows the role that within-policy price

adjustment plays in responding to the aggregate shock. This dimension of adjustment is an

important source of flexibility on impact and soon after the shock is realized. Most MRP

firms have not yet updated their policies, but they are getting signals that they should

charge the lower prices on their menus. Since these signals are partially informative, the

overall MRP price index falls more than the Filtered index. But eventually, this transitory

volatility actually slows down adjustment. Even after updating their policies, MRP firms

continue to make mistakes in their pricing, since their price signal is imperfect. Hence,

transitory price volatility has subtle effects on aggregate flexibility, flattening the IRF, and

hence changing both the impact response and its subsequent persistence. I conclude that

getting a truly accurate picture of how the degree of flexibility evolves over time in response

34This filtering out of transitory price changes requires a reparameterization of the MRP model to feature
a lower volatility of idiosyncratic shocks σξ = 0.025 and a lower cost of undertaking policy reviews κ = 1.2.
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Figure 10: Impulse response functions across model specifications

Note: Model results. Panel (a) shows the impulse response functions of the price index to a negative

nominal demand shock for the baseline SPP and MRP series, as well as for three alternative param-

eterizations: ’Filtered’ shows the response of the SPP model calibrated to match the frequency of

policy reviews and the shift across policies seen in the MRP data; ’Calvo-low’ is the response of the

standard Calvo model calibrated to match these same statistics; and ’Calvo-high’ is the response

of the standard Calvo model calibrated to match the frequency and size of all price changes in the

MRP data. In all cases the MRP statistics are for the non-price discrimination series. Panel (b)

shows the impulse response functions of the price index to the same shock in a low versus high

volatility environment, for both the SPP and MRP models.

to shocks seems to require getting the dynamics of transitory price volatility right.

To put in context the responsiveness to shocks of the information-constrained firms, I

consider some alternative parameterizations of the standard single-price Calvo model. First,

consider a Calvo model calibrated to match the MRP frequency of policy reviews and shift in

prices across policies. The resulting impulse response function is labeled ‘Calvo - low’ in the

figure. The area between this line and the ‘Filtered’ line shows that the review decision of

the information-constrained firm is moderately state-dependent. Alternatively, the impulse

response function labeled ‘Calvo - high’ corresponds to a Calvo model calibrated to match

the MRP frequency and size of all price changes. This line shows virtually no rigidity. The

difference between the MRP line and this line underscores the weak relationship between the

raw frequency of price changes and the degree of aggregate flexibility. This outcome reflects

the noise in the firm’s pricing decisions and the constraint that having a sparse menu of

prices places on firms’ ability to respond to shocks in real time.35

35For clarity, the figure omits the Calvo parameterization that matches the SPP frequency and size of
policy adjustment. That response function is very similar to the SPP response function, highlighting the
low degree of state dependence implied by the SPP hazard function. The fact that high price volatility does
not necessarily imply fast adjustment to shocks has been discussed in prior work seeking to match patterns
in the micro data, with prominent examples being Kehoe & Midrigan (2015) and Eichenbaum et al. (2011).
However, this paper generates this result in the context of a model in which the firm chooses its policy
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Table VII: The Effects of An Increase in Fundamental Volatility

MRP series SPP series

Change in frequency of policy reviews (%) 7.8 9.1

Change in shift across policies (%) 6.6 4.3

Change in frequency of price changes within (%) 3.0

Change in size of price changes within (%) 1.1

Change in total spending on information (%) 10.3 10.8

Change in profits relative to FI (ex-info) (%) -0.7 -0.8

Change in average prices charged (%) 0.5 0.3

Note: Model results. The table shows changes in key statistics as a result of a
10% increase in volatility relative to the baseline parameterizations.

5.2 The Relationship between Volatility and Inflation

Variations in the volatility of fundamental shocks have become of increasing interest in

light of the large volatility in outcomes experienced during the Great Recession. The model

makes strong predictions about how volatility affects pricing policies, the aggregate price

level, and its responsiveness to shocks. Table VII summarizes with a numerical illustration

how the MRP and SPP policies change. Higher volatility increases the losses from having

imprecise information about market conditions. As a result, it affects both the firm’s review

policy and its pricing policy. In a more volatile environment, spending increases on all ways

of acquiring information to offset the negative effects of facing a more volatile environment.

The increased uncertainty results in a large increase in the frequency of policy reviews.

Conversely, the within-policy frequency and size of price changes do not change significantly.

These patterns are consistent with the changes in policies that took place in the data during

the Great Recession. One area where the model does not match the data concerns the shift in

prices across policies. In the data, the size of the shift does not meaningfully change, whereas

in the model part of the adjustment is reflected in higher shifts across policies, for both SPP

and MRP series. Lastly, although the firms respond by acquiring more information, this is

not enough to completely offset the negative expected effects of higher volatility, and as an

additional precautionary measure, the price level also rises by half a percent.

The Great Recession was an episode market by low aggregate demand as well as height-

ened volatility. These forces push the firm in different directions: on the one hand, low

optimally, thereby endogenously generating the price plans postulated by Eichenbaum et al. (2011).
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demand pushes the firm to reduce its prices; on the other hand, higher volatility requires

setting higher prices. This tension can rationalize why inflation did not fall more during

the Crisis. At the same time, it has implications for the effectiveness of monetary policy

in combatting the recession. Consider the IRFs of prices to a negative demand shock when

volatility is 10% higher. The model predicts that the degree of price flexibility is similar in

the two economies, for both SPP and MRP series, as shown in Figure 10b. This reflects the

endogenous response of information acquisition. Faced with a more uncertain environment,

firms increase their information acquisition just enough to offset the higher volatility. These

results contrast existing theoretical results from the menu cost model literature, where ag-

gregate flexibility increases when volatility rises. For example, Vavra (2014) shows this result

in a menu cost model with stochastic volatility.36

6 Conclusion

This paper argues that firms’ choice of how much information to acquire to set prices

determines aggregate price dynamics through the patterns of pricing at the micro level,

and through the large heterogeneity in pricing policies across firms. Information frictions

generate coarse, volatile prices that quantitatively match the patterns of price setting seen

at the product level in micro data. These prices respond slowly to shocks, even though

they change often. The transitory price volatility seen in the data affects the response of

the price index to aggregate shocks, both in terms of the magnitude of the effect on impact

and in terms of its sluggishness, though the effect is fairly modest. Finally, an increase in

volatility results in a precautionary overpricing, as firms seek to protect themselves against

the losses from underpricing in a more volatile environment. This rigidity in the face of a

risky environment implies high monetary policy effectiveness in uncertain times. I leave for

future work the question of whether cyclicality in the acquisition of information can further

dampen the dynamics of inflation in response to large shocks, such as the Great Recession.

36The firm’s ability to resolve the increased uncertainty depends on the cost function for information. In
keeping with the existing rational inattention literature, I have assumed that this cost is linear in entropy
reduction, but recent experimental evidence (Dean & Neligh (2017)) that the cost function for information
processing might not be linear in entropy reduction. I leave this for future work.
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A Empirical Method

This section details the empirical method, its robustness across data generating processes,
and the comparison with filters that seek to identify changes in regular or reference prices,
rather than changes in pricing policies.

A.1 The Break Test

Test Statistic

Let {p1, p2, ..., pn} be a sequence of n price observations and define Tn as the set of all
possible break points, Tn ≡ {t|1 ≤ t < n}. For every hypothetical break point t ∈ Tn, the
Kolmogorov-Smirnov distance between the samples {p1, p2, ..., pt} and {pt+1, pt+2, ..., pn} is

Dn (t) ≡ sup
p
|F1,t(p)−Gt+1,n(p)|,

where F1,t and Gt+1,n are the empirical cumulative distribution functions of the two sub-

samples, F1,t(p) ≡ 1
t

t∑
s=1

1{ps≤p} and Gt+1,n(p) ≡ 1
n−t

n∑
s=t+1

1{ps≤p}.

Following Deshayes and Picard (1986), the test statistic to test the null hypothesis of no
break on a sample of size n is

Sn ≡
√
nmax
t∈Tn

[
t

n

(
n− t
n

)
Dn(t)

]
.
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seminars and conferences for helpful comments. Camilo Morales-Jimenez, Dun Jia, and Donggyu Lee pro-
vided excellent research assistance. This paper supersedes the earlier working papers Stevens (2011; 2012).
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The normalization factor depends on the relative sizes of the two sub-samples, ensuring that
the test is less likely to reject the null when one of the two sub-samples is relatively short,
thus providing a less precise estimate of the population CDF for that sample.

If the null is rejected (Sn > K, where K is the critical value determined below), the estimate
of the location of the break is given by Carlstein’s (1988) statistic,

τn ≡ arg max
t∈Tn

√
t (n− t)

n
Dn(t).

To apply this method to series that may have multiple breaks at unknown locations, I first
test for the existence of one break and estimate its location. I then apply the same process
to each of the two resulting sub-series, until I fail to reject the null of no break.

Critical Value

The only aspect of the algorithm that remains to be specified is the critical value used to
reject the null of no break. The existing literature on estimating breaks using Kolmogorov-
Smirnov focuses on the identification of a single break. For the test of a single break at an
unknown location, on observations that are drawn independently from a continuous distri-
bution, Deshayes and Picard (1986) show that under the null hypothesis of no breaks at any
t ∈ Tn,

Sn → K̃ ≡ sup
u∈[0,1]

sup
v∈[0,1]

|B(u, v)| ,

where B(·, ·) is the two-dimensional Brownian bridge on [0, 1].1 This result provides asymp-
totic critical values for the test of a single break on i.i.d. data from continuous distributions.
However, these values are not directly applicable to my setting: I am searching for multiple
potential breaks on data that is not i.i.d., and also not drawn from continuous distributions
(since prices levels are quite rigid in the data). Hence, the available asymptotic critical values
are too conservative and will have low power. Starting from the critical values provided by
Deshayes and Picard (1986), I determine the appropriate critical value using simulations
in which I compare the results of the test with the true break locations. For simplicity, I
use a single critical value across all sample sizes. The critical value (and the test statistics
themselves) can be tailored to individual processes. However, good-level price series are
notoriously heterogeneous, hence the specification of the test should be robust across different
types of processes. Hence, I assume that the true data generating process for product-level
prices is a mixture of different processes and I use simulations to determine a single critical
value to be used across all of the simulated processes.

Simulations I simulate data as a mixture of four processes that represent commonly ob-
served price patterns: i sticky prices, ii sticky prices with temporary deviations of variable
sign, size and duration, iii sticky prices with transitory downward sales of variable size and

1For the test of a single change point at a known location, the normalized Kolmogorov-Smirnov statistic
converges to a Brownian bridge on [0, 1].
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duration, and iv sticky plans, with a small number of prices repeated over time. The fre-
quency and size of price changes target the ranges observed in the micro data. These patterns
are also consistent with recent theoretical models of price setting that have sought to model
micro patterns: Calvo or simple menu cost models; the dual menu cost model of Kehoe
and Midrigan (2010) ; a dynamic sticky price version of the price discrimination model by
Guimaraes and Sheedy (2011); and lastly, the price plans postulated by Eichenbaum et al.
(2011).

For process i, the simulated series is given by

pt+1 = bt+1 exp {εt+1}+ (1− bt+1) pt,

where bt is a Bernoulli trial with probability of success β ∈ (0, 1), marking the transition to
a new price level, and εt ∼ N (µ, σ2), i.i.d. This series also corresponds to the regular price
series, pRt+1, for the multiple-price processes (ii), (iii) and (iv). In these cases, bt = 1 marks
the transition to a new policy.

For process ii, the simulated series is given by

pt+1 = bt+1 exp {εt+1}+ (1− bt+1)
[
dt+1p

R
t exp

(
εTt+1

)
+ (1− dt+1) pRt

]
,

where dt is a Bernoulli trial with probability of success δ ∈ (0, 1), marking the transition to
a new transitory price, which is given by a mean zero i.i.d. innovation, εTt ∼ N (0, σ2

T ).

For process iii, in addition to imposing that essentially all transitory price changes are
price cuts, by assuming that the mean of the transitory deviations is far below that of the
permanent innovations, εT ∼ N(µT , σ

2
T ), with µT+3σT < µ−3σ, I also allow transitory prices

to last up to three periods, with the maximum length of a transitory price parameterized by
lδ, with 0 ≤ lδ ≤ 3.

Process iv is generated by collapsing the simulated values from process ii inside each policy
to three bins, such that each policy consists of only three distinct prices.

These processes are parameterized to the volatility of the prices in micro data: I target a
range for the mean absolute size of price changes of 10− 15%, and a range for the frequency
of price changes of 10−25%. Prices in the single sticky price process change with a frequency
of 3%. I eliminate from simulations all policy realizations that last only one period.

Critical Values The critical value is determined using two statistics: positive and negative.
The statistic positive reports the number of times that the test correctly rejects the null of
no break on a sub-sample, as a fraction of the number of true breaks in the simulation. A low
value implies that the test is not sensitive enough, such that many breaks are not identified.
Correcting this requires reducing the critical value used. The statistic negative reports the
number of times that the test incorrectly rejects the null of no break on a sub-sample that
does not contain a break, as a fraction of the number of breaks estimated by the test. A high
value implies that the test yields too many false positives, hence the critical value needs to
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be increased. Given the iterative nature of the method, the critical value determines only
how soon the algorithm stops in its search for breaks: for two critical values K2 > K1, the
corresponding sets of estimated break points satisfy T2 ⊂ T1. Hence reducing the critical
value will add new breaks, without affecting the location of the existing breaks.

Table A.1 reports the performance of the break test for different critical values, starting
from the asymptotic 1% and 5% significance levels provided by Deshayes and Picard (1986).
The asymptotic critical values are too conservative for this setting. Using the critical value
associated with the 5% significance level, the break test correctly finds only 87% of the
simulated breaks on average, across all processes. The test fails to identify relatively short
policy realizations, overestimating the average policy length by six periods.

Table A.1: BREAK TEST CRITICAL VALUE

Critical value, K 0.874 0.772 0.7 0.61 0.6 0.5 0.4

Positive (min, % true) 83.6 85.8 87.9 90.1 90.2 91.9 93.7

Positive (mean, % true) 83.9 86.5 88.5 90.8 90.9 93.2 95.0

Negative (max, % test) 0.2 0.8 1.8 4.7 5.1 10.2 35.2

Negative (mean, % test) 0.1 0.3 0.7 1.3 1.4 4.9 12.2

Exact synch (min, % true) 91.0 90.9 90.7 90.5 90.4 90.4 90.3

Exact synch (mean, % true) 93.4 93.4 93.3 93.2 93.2 93.2 93.1

Distance to truth (mean, weeks) 2 2 2 2 2 2 2

Length overshoot (mean, weeks) +7 +6 +5 +3 +3 −0.2 −5

Break test simulation results for different critical values, across the four simulated
processes. The critical values K = 0.874 and K = 0.772 are the asymptotic 1% and
5% significance levels provided by Deshayes and Picard (1986). Positive (% true) is the
fraction of times that the test correctly rejects the null of no break, for each simulated
process, reported as the minimum and the mean across all processes. Negative (% test)
is number of times that the test incorrectly rejects the null of no break as a fraction
of the total number of breaks found by the test, reported as the maximum and the
mean across all simulated processes. Exact synch (% true) is the number of breaks
found at the exact simulated location, as a fraction of the total number of breaks in the
simulation, reported as both the minimum and the average across the four processes.
Distance to truth is the average gap (number of periods) between the test estimate
of the break location and the true location, excluding exact synchronizations, using a
standard nearest-neighbor method. Length overshoot is the average number of periods
by which the test overshoots the average length of policy realizations.

Reducing the critical value improves the test’s performance: K = 0.61 is the threshold critical
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value for which the positive rate is at least 90% for all processes, while the negative rate is
at most 5% for all processes. On average, across all processes, this critical value yields a
91% positive rate, and only a 1% negative rate. The average length of the policy realizations
identified by the break test is longer than the true average length by three periods, reflecting
the weak power in identifying policies that last between two and four periods. Restricting
the simulations to policies lasting at least five weeks ensures the identification of virtually
all breaks and eliminates the bias in the estimated average policy length..

Upon rejection of the null, I find that the change point estimate τk coincides exactly with
the true change point 93% of the time, and is otherwise off by two periods, on average. Im-
portantly, neither the exact synchronization nor the average distance between the estimated
breaks and the true breaks, when the two are not exactly synchronized, are meaningfully
affected by the choice of the critical value, since reducing the critical value does not affect
the location of existing breaks, and only adds new breaks at new locations. As a result, the
synchronization between the break test and the truth is consistently at 93% and the distance
to the true break is consistently two periods on average.

A.2 Comparison with Filters

I compare the break test with three existing filtering methods: a v-shaped sales filter similar
to those employed by Nakamura and Steinsson (2008), the reference price filter of Eichenbaum
et al. (2011), and the running mode filter of Kehoe and Midrigan (2010), which is similar to
that of Chahrour (2011). These filters have been proposed to uncover stickiness in product-
level pricing data once one filters out transitory price changes. For these filters, a policy is
identified by the regular or reference price in effect, and a break is associated with a change
in the regular or reference price.

I apply each filter and the break test to micro data from Dominick’s Finer Foods stores, which
is a familiar and frequently used data set, for comparability with the existing literature. For
each filter parameterization, I report the following statistics: Filter duration, which is the
median policy duration implied by the filter, obtained by computing the mean frequency of
breaks in each product category, taking the median across categories, and then computing
the implied duration for the product with the median frequency as d = −1/ ln (1− f); Ratio
of breaks, the ratio of the number of breaks found by the filter to the number of breaks found
by the break test, computed for each series and averaged across all series; Exact synch, the
number of breaks that are synchronized between the two methods, as a fraction of the number
of breaks found by the break test (also computed for each series and then averaged across
all series); Gap between methods, the median distance between the break points estimated
by the two methods, excluding exact synchronizations.

Standard statistics of interest vary significantly across the parameterizations of the different
filters. Hence, although intuitive, filters present an implementation challenge in that they
allow for substantial discretion in both setting up the algorithm and choosing the parameters
that determine what defines a transitory price change and how it is identified.
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V-shaped Sales Filter

The v-shaped sales filters eliminate price cuts that are followed, within a pre-specified win-
dow, by a price increase to the existing regular price or to a new regular price. I implement
the v-shaped sales filter following Nakamura and Steinsson (2008).

The algorithm requires four parameters: J,K, L, F . The parameter J is the period of time
within which a price cut must return to a regular price in order to be considered a transitory
sale. When a price cut is not followed by a return to the existing regular price, several options
arise regarding how to determine the new regular price. The parameters K and L capture
different potential choices about when to transition to a new regular price. The parameter
F ∈ {0, 1} determines whether to associate the sale with the existing regular price or with
the new one.

I apply the filter with different parameterizations to Dominick’s data, varying the sale window
J ∈ {3, ..., 12}, K,L ∈ {1, ..., 12} and F ∈ {0, 1}. The parameter J is the most important
determinant of the frequency of regular price changes. The parameters K, L and F do not
significantly affect the median implied duration of the regular price, but they do affect the
timing of breaks, thus affecting the synchronization of the filter with the break test. For
example, fixing J = 3 while varying the remaining parameters of the v-shaped filter increases
the synchronization in the timing of breaks between the v-shaped filter and the break test
from 65% to 80%. Hence I report results for parameterizations of K,L, F that yield the
highest degree of synchronization between the v-shaped filter and the break test, for each
value of J .

Table A.2 presents the results. Statistics vary significantly with the parameterization, with
the median implied duration of regular prices increasing from 12 to 29 weeks as I increase
the length of the sale window, J . Increasing J beyond 12 weeks no longer significantly
impacts statistics. This sensitivity to the parameterization of the filter is quite strong, but
not entirely specific to Dominick’s data: Nakamura and Steinsson (2008) report that for the
goods underlying the US CPI, one can obtain different values for the median frequency of
price changes in monthly data. For the range of parameters they test, they find median
durations ranging between 6 and 8.3 months.

The filter alone cannot provide a measure of accuracy, and hence enable us to pick the best
parameterization. However, the break test is expected to have at least 90% accuracy in
identifying breaks in the data, if the data is a mixture of the types of processes simulated
above. Hence, I compute the synchronization of the different parameterizations of the v-
shaped filter with the break test.

For most parameterizations, the v-shaped method yields shorter policy realizations compared
with the break test, which yields a median implied duration of 31 weeks in Dominick’s data.
Divergence is primarily driven by the assumption of a fixed sale window and by the fact that
the filter rules out transitory price increases. Adjusting the parameters of the v-shaped filter
yields a trade-off in performance: a small sales window generates many more breaks, but
improves on the synchronization in the timing of the breaks found by both methods. For
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Table A.2: V-SHAPED SALES FILTER PERFORMANCE

Sales window, J (weeks) 3 7 12

Filter duration (median, weeks) 12 24 29

Ratio of breaks (mean, % break test) 360 177 155

Exact synch (mean, % break test) 80 64 58

Gap between methods (median, weeks) 3 5 7

V-shaped filter results for different parameterizations on Do-
minick’s data. Filter duration is the implied duration for the
median frequency of breaks across product categories. Ra-
tio of breaks is number of breaks found by filter divided by
number of breaks found by break test, averaged across series.
Exact synch is number of breaks that are synchronized be-
tween the two methods divided by number of breaks found
by break test, averaged across series. Gap between methods is
median distance between the break points estimated by the
two methods, excluding exact synchronizations.

example, setting J = 3 weeks generates 360% more breaks than the break test; but 80% of
the breaks found by both methods are exactly synchronized. For breaks that are not exactly
synchronized, the mean distance between the break points estimated by the two methods is
three weeks. Increasing the sales window still generates 55% more breaks, but substantially
reduces the method’s ability to estimate the timing of breaks: synchronization between the
filter and the break test falls from 80% to 58%.

In summary, the v-shaped filter presents a trade-off: a short sale window captures most of
the change points identified by the break test with a relatively high degree of precision, but
also generates many more additional breaks, leading to an under-estimate of the rigidity of
regular prices relative to the break test; a long sale window matches the median duration of
regular prices, but misses the timing of breaks.

Reference Price Filter

I next implement the reference price filter proposed by Eichenbaum et al. (2011). They
split the data into calendar-based quarters and define the reference price for each quarter
as the most frequently quoted price in that quarter. I consider a window length in weeks
W ∈ {6, 10, 13}.

Table A.3 presents the results. The median implied duration of reference prices increases
from 24 to 51 weeks as I increase the length of the reference window, W . For reference
windows above ten weeks, I find that less than 10% of the breaks are synchronized with the
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Table A.3: REFERENCE PRICE FILTER PERFORMANCE

Reference window, W (weeks) 6 10 13

Filter duration (median, weeks) 24 41 51

Ratio of breaks (mean, % break test) 168 91 72

Exact synch (mean, % break test) 13 8 5

Gap between methods (median, weeks) 2 3 3

Reference price filter results for different parameteriza-
tions on Dominick’s data.

break test breaks. This low ratio is entirely due to the reference price filter imposing a fixed
minimum cutoff for policy lengths, which largely assumes away the question of identifying
the timing of changes in the reference price series. Since I find that the length of policies is
highly variable over time, the two methods are likely to overlap exactly only by chance.

In summary, the reference price filter presents a challenge in terms of identifying the timing
of policy changes.

Running Mode Price Filter

I implement the running mode filter proposed by Kehoe and Midrigan (2010), which cate-
gorizes price changes as either temporary or regular, without requiring that all temporary
price changes occur from a rigid high price, as does the v-shaped filter. For each product,
they define an artificial series called the regular price series, which is a rigid running mode
of the series. Every price change that is a deviation from the regular price series is defined
as temporary, whereas every price change that coincides with a change in the regular price is
defined as regular. In this context, I define a policy change as a change in the regular price.

The algorithm has two key parameters: A, which determines the size of the window over
which to compute the modal price, and C, a cutoff used to determine if a change in the
regular price has occurred. Specifically, if within a certain window, the fraction of periods in
which the price is equal to the modal price is greater than C, then the regular price is updated
to be equal to the current modal price; otherwise, the regular price remains unchanged.

Table A.4 presents the results. The running mode filter is much less sensitive to parame-
ter changes compared with the reference or v-shaped filters. The median implied duration
ranges from 27 to 34 weeks across parameterizations. This filter also improves on the syn-
chronization of breaks found by the reference price filter: at the preferred parameterization,
while exact synchronization with the break test is moderately low, at 48%, the median dis-
tance between the breaks found by the filter and those found by the break test is two weeks,
indicating that the two methods are fairly close.
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Table A.4: RUNNING MODE FILTER PERFORMANCE

Rolling window, A (weeks) 6 10 14

Filter duration (median, weeks) 27 38 34

Ratio of breaks (mean, % break test) 144 102 117

Exact synch (mean, % break test) 52 48 42

Gap between methods (median, weeks) 2 2 2

Running mode filter results for different parameterizations
on Dominick’s data.

In summary, when parameterized to match the duration of policies found by the break test,
the running mode filter is largely in agreement with the break test, with small differences in
the timing of breaks.

Performance in Simulations

To better understand the performance of the different methods, I apply all methods to
simulated data, for which the true location of the breaks is known. For each filter, I use the
parameterization that yields the closest match between the filter and the break test (which
turns out to be the parameterization that also yields the closest match between the filter and
the truth). I use the four simulated processes described above: (i) Single sticky price, (ii)
One-to-flex policies, (iii) Downward-flex policies, and (iv) Coarse multiple-price policies.

I report the following statistics: Ratio of breaks (% truth), the number of breaks found by
the method as a fraction of the true number of breaks in the simulation; Exact synch (%
truth), the number of breaks found by the method that coincide with true breaks, as a
fraction of the true number of breaks; Distance to truth, the median distance between the
break points estimated by the method and the true breaks, excluding exact synchronizations,
using a standard nearest-neighbor method; Length overshoot, the median number of periods
by which the method overestimates the length of policies.
Table A.5 reports the synchronization of the methods with the true break points. The v-
shaped filter over-estimates the number of breaks, and reparameterizing it to match the
frequency of breaks reduces the degree of synchronization with the actual break locations.
The reference price filter misses the timing of breaks, and adjusting the parameterization
cannot meaningfully improve on this dimension. The running mode filter parameterized to
match the frequency of breaks obtained by the break test yields results that are close to the
break test, with a high degree of synchronization at 89% versus 93% for the break test.

In summary, of all the filters, the running mode filter proposed by Kehoe and Midrigan
(2010) performs best in simulations, especially once it is parameterized to yield a frequency
of breaks that is close to the actual frequency in the data or in the simulation.
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Table A.5: FILTER PERFORMANCE IN SIMULATIONS

Method Break test V-shaped Reference Running

Ratio of breaks (% truth) 93 186 93 94

Exact synch (% of truth) 93 59 17 89

Distance to truth (median, weeks) 2 5 3 2

Length overshoot (median, weeks) 3 −9 3 2

Break test and filter results in simulated data.

A.3 Robustness of Pricing Policies Statistics

To document the robustness of the empirical properties of the identified pricing policies I
report statistics for alternative classifications, identifications and definitions of the policies.

Table A.6 presents statistics using the baseline critical value, but an alternative classification
of series: All product series that have at least one MRP realization are labeled as pursuing
an MRP strategy. All product series that have no such realizations, but have at least one
OFP policy realization are assigned to the one-to-flex category. Finally, all products that
consist entirely of single-price policies are counted in the SPP category. This categorization
exhausts all product series: no series are characterized by purely flexible policies.2

Table A.7 presents statistics based on the rolling mode filter of Kehoe and Midrigan. Under
this approach, a break to a new policy is identified by a change in the modal price charged
over a rolling window. Overall, the statistics are very similar when using this filter as when
using the break test, though the timing of breaks does not coincide perfectly. Although the
qualitative properties of pricing policies overall and by type remain unchanged, the implied
policy durations are marginally longer, the size of the shift in prices across policies is one
to two percentage points smaller, and the incidence of policies in which the maximum price
coincides with the modal price is lower than that identified by the break test.

Table A.8 presents statistics under the baseline break test, but where the level of observation
is the policy realization for each firm-product pair. The statistics are consistent with those
reported for the full series in the main text, reflecting the composition of series consisting of
multiple types of policy realizations.

Table A.9 presents pricing policy statistics obtained using different critical values for identi-
fying breaks in the data.

2A policy is defined as flexible if no price levels are repeated over the life of a policy realization.
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Table A.6: Characteristics of Price Setting Policies: Alternative Series Classification

All Single-price One-to-flex Multi-rigid

Fraction of series (%) 100 11.0 17.0 72.0

Monthly frequency of policy changes (%) 12.2 7.4 12.4 13.6

Implied policy duration (months) 7.7 13.0 7.6 6.8

Freq. of weekly price changes within (%) 24.6 0.0 8.1 33.7

Size price changes within (%) 11.9 5.8 9.3 13.0

Size of policy shift (%) 11.3 8.3 10.7 11.7

Policy cardinality 3 1 2 3

Note: AC Nielsen Retail Scanner data, 2006-2015. Implied policy duration is the duration implied
by the median monthly frequency of policy changes. Frequency of weekly price changes within
is the median weekly frequency with which prices change between policy breaks. Size of price
changes within is the absolute size of price adjustment, and is non-zero for single-price policies
because the category includes series with rare deviations from the modal price, as defined in the
text. Size of policy shift is the median absolute change in the weighted average price across policy
realizations. Policy cardinality is the median number of unique prices charged over the life of the
policy.
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Table A.7: Characteristics of Price Setting Policies: Kehoe-Midrigan Filter

All Single-price One-to-flex Multi-rigid

Policy duration (months) 7.8 13.3 5.7 7.9

Policy cardinality 3 1 3 4

Policy shift (%) 9.2 8.4 9.7 9.1

Freq. price changes within (%) 24.8 0.4 15.4 36.8

Size price changes within (%) 12.4 6.4 10.6 14.0

Fraction policies with max=mode (%) 57.0 79.9 57.4 54.9

Fraction of series (%) 100 11.4 30.9 57.7

Note: AC Nielsen Retail Scanner data, 2006-2015. Policy duration is the median duration
implied by the frequency of breaks. Policy cardinality is the median number of unique prices
charged over the life of the policy. Policy shift is the median absolute change in the weighted
average price across policy realizations. Freq. price changes within is the frequency with which
prices change between policy breaks. Size of price changes within is non-zero for single-price
policies because the category includes series with policy realizations that exhibit rare deviations
from the modal price, as defined in the text. Fraction policies with max=mode is the fraction
of policy realizations in which the maximum price is the modal price, for each type of series.
Fraction of obs. is the fraction of observations that belong to each type of series. MR-Discrim
reports statistics for those price discrimination multi-rigid series for which a plurality of policies
have the modal price equal to the high price. Statistics are computed by taking the mean across
modules in each group, and then the expenditure-weighted median across groups.
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Table A.8: Characteristics of Price Setting Policies: By Policy Realization

All Single-price One-to-flex Multi-rigid

Fraction of observations (%) 100 38.5 30.0 31.6

Policy cardinality 3 1 4 7

Freq. price changes within (%) 28.1 0.0 40.0 50.0

Size price changes within (%) 9.2 4.6 9.0 12.7

Fraction policies with max=mode (%) 63.5 82.6 46.5 52.0

Note: AC Nielsen Retail Scanner Data. Fraction of observations is the fraction of observations
that belong to each type of policy realization. Policy cardinality is the median number of
unique prices charged over the life of the policy. Freq. price changes within is the frequency
with which prices change between policy breaks. Size price changes within is non-zero for
single-price policies because the category includes series with policy realizations that exhibit
rare deviations from the modal price, as defined in the text. Fraction policies with max=mode
is the fraction of policy realizations in which the maximum price is the modal price, for each
type of series.
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Table A.9: Characteristics of Price Setting Policies for the Full Sample: Alternative Critical
Values

Critical values 0.57 0.61 0.65 0.70

Monthly frequency of policy changes (%) 14.1 12.2 10.6 8.8

Implied policy duration (months) 6.6 7.7 9.0 10.9

Freq. of weekly price changes within (%) 24.1 24.6 25.0 25.3

Size price changes within (%) 11.8 11.9 12.0 12.1

Size of policy shift (%) 11.7 11.3 11.0 10.7

Policy cardinality 3 3 3 4

Fraction of series that are SPP (%) 12.6 12.0 11.5 11.0

Fraction of series that are OFP (%) 30.7 28.5 26.9 25.2

Fraction of series that are MRP (%) 56.6 59.5 61.6 63.8

Note: AC Nielsen Retail Scanner data, 2006-2015. Baseline critical
value is 0.61. A higher critical value requires a larger distance between
distributions and hence identifies breaks less frequently. Implied policy
duration is the duration implied by the median monthly frequency of
policy changes. Frequency of weekly price changes within is the median
weekly frequency with which prices change between policy breaks. Size
of price changes within is the absolute size of price adjustment, and
is non-zero for single-price policies because the category includes series
with rare deviations from the modal price, as defined in the text. Size of
policy shift is the median absolute change in the weighted average price
across policy realizations. Policy cardinality is the median number of
unique prices charged over the life of the policy.
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B Proofs

B.1 The Firm’s Information Choices

Assumptions on the Cost of Information

Before deriving the firm’s optimal policy, I discuss the key assumptions that affect the form
of the solution. I assume that the quantity of information required for both the review
decision and the pricing decision is small relative to the total capacity of the decision-maker,
such that each unit cost may be taken as fixed. Moreover, the same unit cost applies to all
types of information that may be relevant for each decision, regardless of their degrees of
complexity. The types of information that are potentially relevant to each decision include
information about the current conditions, the number of periods since the last review, and
the history of signals and prices since the last review. Finally, I assume that there is no free
transmission of information between the agents making the two decisions. The assumption
that no piece of information is available for free and that the same unit cost applies to all
types of information follows Woodford (2009). It is common in dynamic rational inattention
papers to assume that the entire history of past signals is available to the decision-maker
for free in each period, prior to acquiring the information for that period. However, the
availability of that side information is not required in the current setup, given the firm’s
ability to occasionally review its policy.

The assumption is that all information, including knowledge of the passage of time or past
events, is subject to the same unit cost of information implies that the signal structure
for each decision must be defined relative to a single frequency of reviews and a single
unconditional frequency of prices, both chosen at the time of the review. If instead between
reviews, the decision-maker had free access to either the entire history of past signals or the
number of periods that have elapsed since the last review, the optimal policy would specify
a separate frequency and decision rule for each history of prior signals, or for each period
between reviews, each slightly different from the previous one. Then, in each period, the
agent would draw a signal from the distribution corresponding to that period. This would
complicate the optimal policy tremendously, but would likely yield little gain in terms of
bringing the model closer to the data. The distribution of prices would still be discrete and
policies would still be updated infrequently. Each policy would still consist of a constant set
of prices, but there would be a very low probability of seeing exactly the same price level be
repeated over some window of time.

The Review Policy

Let ω̃t denote the complete state at the time of the receipt of the review signal in period
t. It includes the current realization of the permanent shock and the full history of shocks,
signals, and decisions through period t − 1. Suppose that the firm decides to review its
policy. The new review policy is implemented starting in period t+ 1.

Definition 1. A review policy, implemented following a policy review in an arbitrary state
ω̃t in period t, is defined by
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1. Rt, the set of possible review signals;

2. {ρt+τ (r|ω̃t+τ )}τ , the sequence of conditional probabilities for all r ∈ Rt, all ω̃t+τ , and
all τ > 0 until the next review;

3. ρt (r), the unconditional frequency with which the decision-maker anticipates receiving
each signal r, for all r ∈ Rt, until the next review;

4. λt : Rt → [0, 1], the decision rule for conducting reviews, with λt (r) specifying the
probability of conducting a review when the signal r is received, for all r ∈ Rt.

The quantity of information expected, at the time of the review, to be acquired in the
implementation of this review policy in each period until the next review is

Jrt+τ = Et {I (ρt+τ (r|ω̃t+τ ) , ρt (r))} , (B.1)

I (ρ, ρ) ≡
∑
r∈Rt

ρ (r|ω̃) [log ρ (r|ω̃)− log ρ (r)] , (B.2)

where Et denotes expectations conditional on the state ω̃t, on a policy review having taken
place in that state, and on the policy implemented at that time. This quantity is given by
the average distance between the unconditional frequency of review signals over the life of
the policy, ρt, and each conditional distribution, ρt+τ .

The Pricing Policy

In each period, the price signal is received after the review decision has been made, and after
the realization of the transitory shock. For any τ ≥ 0, let ωt+τ denote the complete state at
the time of the receipt of the price signal in period t + τ . As above, suppose that the firm
conducts a policy review in an arbitrary state ω̃t. The new pricing policy applies starting in
period t.

Definition 2. A pricing policy, implemented following a policy review in an arbitrary state
ω̃t in period t, is defined by

1. St, the set of possible price signals;

2. {φt+τ (s|ωt+τ )}τ , the sequence of conditional probabilities of receiving the price signal
s, for all s ∈ St, all τ > 0, and all ωt+τ until the next review;

3. φt (s), the unconditional frequency with which the decision-maker anticipates receiving
each price signal s, for all s ∈ St, until the next review;

4. αt : St × R→ [0, 1], the decision rule for price-setting, with αt (p|s) specifying the
probability of charging price p ∈ R when the price signal s is received, for all s ∈ St.

The quantity of information expected to be acquired in the implementation of this pricing
policy in each period until the next review is

Jpt+τ = Et
{
I
(
φt+τ (s|ωt+τ ) , φt (s)

)}
, (B.3)
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I
(
φ, φ

)
=
∑
s∈St

φ (s|ω)
[
log φ (s|ω)− log φ (s)

]
, (B.4)

where Et denotes expectations conditional on the state ω̃t, on a policy review having taken
place in that state, and on the policy implemented at that time.

The first three elements in each of the two definitions can be thought of as the interface
between the manager and her environment, while the fourth element maps the information
received through this interface into the manager’s actions.

These definitions are very general. The sets of possible signals Rt and St can include any
variables that may be useful for the decisions at hand. It is important to note that nothing
in the specification rules out continuous distributions. The sets Rt and St have been written
as countable sets only for expository purposes, but it is only once we specify the objective
function and the shock processes that the optimal signals will endogenously turn out to
be continuous or discrete. Likewise, the sequences of conditional probabilities, {ρt+τ}τ and
{φt+τ (s|ωt+τ )}τ can be related in an arbitrary way to the state, and these relationships
can vary with each future period until the next review. The only assumption is that all
information, including knowledge of the passage of time or past events, is subject to the
same unit cost of information. As a result, the two signal structures must each be defined
relative to a single frequency (ρt and φt (s)), and each decision-maker must apply a single
decision rule (λt and αt), both chosen at the time of the review.3

The Cheapest Signal Structure

The amount of information that is used by the decision-maker quantifies the reduction in
uncertainty that is reflected in the agent’s final decision (for example, review or do not
review). Let Λt+τ (ω̃t+τ ) denote the probability with which the decision-maker anticipates
undertaking a policy review in state ω̃t+τ in period t+τ , and let Λt denote the unconditional
probability of a review across all states, under the current policy,

Λt+τ (ω̃t+τ ) ≡
∑
r∈R

λt (r) ρt+τ (r|ω̃t+τ ) , (B.5)

Λt ≡
∑
r∈R

λt (r) ρt (r) . (B.6)

Similarly, let ft+τ (p|ωt+τ ) denote the probability that the firm charges price p in state ωt+τ
in period t + τ , and let ft (p) denote the unconditional probability that price p is charged

3Suppose that between reviews, the decision-maker had free access to either the entire history of past
signals or the number of periods that have elapsed since the last review. In that case, the firm’s policy
would specify separate frequencies and decision rules for each history of prior signals, or for each period
between reviews. Such a specification would complicate the model but, more importantly, it would take the
model farther away from the empirical evidence, which underscores simplicity in the pricing policies chosen
by firms, which most often consist of no more than three or four distinct price points.
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over the life of the policy,

ft+τ (p|ωt+τ ) ≡
∑
s∈S

αt (p|s)φt+τ (s|ωt+τ ) , (B.7)

ft (p) ≡
∑
s∈S

αt (p|s)φt (s) . (B.8)

Lemma 1. The most efficient policy, implemented following a policy review in an arbitrary
state ω̃t in period t, defines {0, 1} as the set of possible review signals r, and specifies

1. {Λt+τ (ω̃t+τ )}τ , the sequence of conditional probabilities of receiving r = 1 (conduct a
review) in state ω̃t+τ , period t+ τ ;

2. Λt, the anticipated unconditional frequency of reviews;

3. Pt, the set of prices charged until the next review;

4. {ft+τ (p|ωt+τ )}τ , the sequence of conditional probabilities of charging price p for all
p ∈ Pt, all τ > 0 and all ωt+τ until the next review;

5. f t (p), the anticipated unconditional frequency of prices, for all p ∈ Pt.

At the time of the review, the quantities of information expected to be acquired in the imple-
mentation of this policy in each period until the next review are

Irt+τ = Et
{
I
(
Λt+τ (ω̃t+τ ) ,Λt

)}
, ∀τ > 0, (B.9)

Ipt+τ = Et
{
I
(
ft+τ (p|ωt+τ ) , ft (p)

)}
, ∀τ ≥ 0. (B.10)

Proof. Both the review decisions and prices are distributed independently of the state, con-
ditional on the review and price signals. By the data-processing inequality (Cover & Thomas
(2006)), the relative entropy between decisions and states is weakly less than the relative
entropy between signals and states. If decisions are random functions of the signals, then
the inequality is strict.

This result is not only intuitive, but it also formally defines the cheapest policy that the
firm can employ in order to make its review and pricing decisions. It extends the results of
Woodford (2009) to the case of pricing policies that consist of more than a single price. The
quantity Irt+τ defined in equation (B.9) is the smallest quantity of information that the review
manager can acquire and still make exactly the same review decisions as when acquiring
Jrt+τ , defined in equation (B.1). Likewise, the quantity Ipt+τ defined in equation (B.10) is the
smallest quantity of information that the pricing manager can acquire and still make exactly
the same decisions as when acquiring Jpt+τ , defined in equation (B.3). For instance, it would
not be optimal for the policy to differentiate between states in which the decision-maker
takes the same action, since by merging such signals, information costs would be reduced
with no loss in the accuracy of the decision. Moreover, it would also not be efficient to
randomize the decision upon receipt of the signal, since it would be cheaper to reduce the
mutual information between the signal and the state instead.
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B.2 The Firm’s Problem

Let V t (ω̃t) denote the maximum attainable value of the firm’s continuation value, looking
forward from the time of a policy review in an arbitrary state ω̃t in period t. Let

Πt+τ (ωt+τ ) ≡
∑

p∈Pt ft+τ (p|ωt+τ ) π(p− xt+τ )− θpI
(
ft+τ (p|ωt+τ ) , ft (p)

)
denote the firm’s expected per-period profit in an arbitrary state ωt+τ , τ ≥ 0, (after that
period’s transitory shock, but before receipt of the price signal), under the pricing policy in
effect in that state, net of the cost of the price signal, and let

Γt+τ (ω̃t+τ−1) ≡
∏τ−1

k=1 [1− Λt+k (ω̃t+k)] ,

for τ > 1, with Γt+1 (ω̃t) ≡ 1, denote the probability, expected at the time of the review, that
the review policy chosen in period t, continues to apply τ periods later, when the history of
states is given by ω̃t+τ−1. The firm’s maximum continuation value at the time of the policy
review is

V t (ω̃t) = Et {Πt (ωt) +
∑∞

τ=1 β
τΓt+τ (ω̃t+τ−1)Wt+τ (ωt+τ )} ,

Wτ (ωτ ) ≡ [1− Λτ (ω̃τ )] Πτ (ωτ ) + Λτ (ω̃τ )
[
V τ (ω̃τ )− κ

]
− θrI

(
Λτ (ω̃τ ) ,Λt

)
,

so that conditional on the current policy surviving all the review decisions leading to a
particular state ω̃t+τ , τ > 0, the firm pays the cost of the review signal. It then applies
the current policy with probability 1− Λt+τ (ω̃t+τ ), in which case it attains expected profits
Πt+τ (ωt+τ ), and it undertakes a policy review with probability Λt+τ (ω̃t+τ ), in which case it
pays the review cost κ and expects the maximum attainable value from that state onward,
V t+τ (ω̃t+τ ).

Since at the time of a policy review in period t, the firm learns the complete state, ω̃t,
the firm’s problem can be expressed in terms of the innovations to the state since the last
review. Using the normalizations defined in the main text, and given the laws of motion for
the pre-review and post-review target prices, x̃t and xt, the normalized variables ỹτ , yτ , and
hence $̃τ , $τ , are distributed independently of the state ω̃t at the time of the policy review.

The firm’s problem becomes choosing Λ, {Λτ ($̃τ )}τ , Q, f (q), and {fτ (q|$τ )}τ to solve

V = maxE [Π0 ($0) +
∑∞

τ=1 β
τΓτ ($̃τ−1)Wτ ($τ )],

Wτ ($τ ) ≡ (1− Λτ ($̃τ )) Πτ ($τ ) + Λτ ($̃τ )
(
V − κ

)
− θrI

(
Λτ ($̃τ ) ,Λ

)
,

Πτ ($τ ) ≡
∑

q∈Q fτ (q|$τ ) π(q − yτ )− θpI
(
fτ (q|$τ ) , f (q)

)
,

Γτ ($̃τ−1) ≡
∏τ−1

k=1 [1− Λk ($̃k)], ∀τ > 1.
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B.3 Solution

I obtain the solution to the firm’s problem in steps, deriving each element of the optimal
policy taking the other elements as given.

The Conditional Distribution of Prices

The firm’s choice of an optimal pricing policy for a given review policy is reduced to the
maximization of the term that directly depends on the pricing policy in the firm’s objective,

E {
∑∞

τ=0 β
τΓτ+1 ($̃τ ) Πτ ($τ )} .

Consider the subproblem of choosing the optimal sequence of conditional price distributions,
{fτ (q|$τ )}τ , taking as given all other elements of the firm’s policy. For each τ and each
possible news state $τ reached under the current policy, the firm chooses the conditional
distribution of normalized prices fτ (q|$τ ) that solves

maxfτ (q|$τ ) Πτ ($τ ) s.t.
∑

q∈Q fτ (q|$τ ) = 1 and fτ (q|$τ ) ≥ 0, ∀q ∈ Q.

Let the Lagrangean multipliers on the constraints be denoted by µ and η (q). For fτ (q|$) >
0, such that η (q) = 0, differentiating with respect to fτ (q|$), yields

π(q − yτ )− θp
[
log fτ (q|$τ )− log f (q)

]
− (θp + µ) = 0.

Rearranging, and letting φ ≡ exp
{

1 + µ
θp

}
yields

fτ (q|$τ ) = 1
φ
f (q) exp

{
1
θp
π(q − yτ )

}
.

Summing over q and noting that the conditional distribution only depends on the normalized
post-review target price yτ , and on the invariant functions π and f yields as solution the
invariant distribution

f (q|yτ ) = f (q)
exp{ 1

θp
π(q−yτ )}∑

q̂∈Q f(q̂) exp{ 1
θp
π(q̂−yτ )} .

Note that if f (q) > 0, then f (q|yτ ) > 0, such that the multiplier η (q) is indeed zero for all
q, as was assumed above.

Finally, the solution implies that the expected per-period profit is also an invariant function
of the normalized target price, Πτ ($τ ) = Π(yτ ).

The Hazard Function for Reviews

Consider next the firm’s choice of an optimal sequence of hazard functions {Λτ ($̃τ )}τ for a
given pricing policy, and further taking Λ as given. This problem can be given a recursive
formulation by noting that the choice of the sequence {Λτ ′ ($̃τ ′)}τ ′ for all τ ′ > τ , looking
forward from an arbitrary state $̃τ , is independent of the choices made for periods prior to
τ , or for news states that are not successors of $̃τ . Let Vτ ($̃τ ) be the maximum attainable
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value of the firm’s objective, from some period τ onwards. The firm’s choice of an optimal
sequence of hazard functions has the recursive form

Vτ ($̃τ ) = maxΛτ+1($̃τ+1) Eτ

Π (yτ ) + β

 (1− Λτ+1 ($̃τ+1))Vτ+1 ($̃τ+1)
+Λτ+1 ($̃τ+1)

[
V τ+1 ($̃τ+1)− κ

]
−θrI

(
Λτ+1 ($̃τ+1) ,Λ

)
 ,

where Eτ integrates over all possible innovations to the state, $̃τ+1, that follow $̃τ under the
current review policy. For each state $̃τ+1, the hazard function Λτ+1 ($̃τ+1) is then chosen
to maximize the term in square brackets.

From the solution to the firm’s optimal choice for the conditional distribution of prices,
f (q|y), the firm’s per-period profit net of the cost of the price signal is an invariant function,
Π (y), for all y. The value Vτ ($̃τ ) depends on the state only through the dependence of
the expected profit on the value of yτ . Since ỹτ is a random walk and yτ = ỹτ + ντ , where
ντ is i.i.d, then for any τ ′ ≥ τ, the probability distributions for realizations of ỹτ ′ and yτ ′
conditional on $̃τ depend only on the value of ỹτ .

Hence, the maximum attainable value is an invariant function that only depends on the value
of ỹτ , and the solution is of the form Λτ+1 ($̃τ+1) = Λ (ỹτ+1) , where Λ (ỹ) is a time-invariant
function. The value function satisfies the fixed point equation

V (ỹ) = E
{

Π (y) + β
[
(1− Λ (ỹ′))V (ỹ′) + Λ (ỹ′)

[
V − κ

]
− θrI

(
Λ (ỹ′) ,Λ

)]}
,

where E denotes expectations over all possible values ỹ′ = ỹ + ν̃ and y = ỹ + ν, conditional
on ỹ, the continuation value upon conducting a review is V = V (0) and

V − κ− V (ỹτ+1)− θr ∂I(Λ(ỹ),Λ)
∂Λ(ỹ)

= 0, with

∂I(Λ,Λ)
∂Λ

= log Λ
1−Λ
− log Λ

1−Λ
.

Hence

Λ(ỹ)
1−Λ(ỹ)

= Λ
1−Λ

exp
{

1
θr

[
V − κ− V (ỹ)

]}
.

The Frequency of Reviews

For a given pricing policy, and a given hazard function for policy reviews, and using the
previous two results, the optimal frequency of reviews, Λ, is chosen to maximize

E
∑∞

τ=1 β
τΓ (ỹτ−1)

[
(1− Λ (ỹτ )) Π (yτ ) + Λ (ỹτ )

[
V − κ

]
− θrI

(
Λ (ỹτ ) ,Λ

)]
,

where Γ (ỹτ−1) ≡
∏τ−1

k=1 [1− Λ (ỹk)] for τ > 1, with Γ (0) ≡ 1, is the policy’s survival probabil-
ity to period τ, which depends on the history of the pre-review target prices, ỹτ−1. Holding
fixed the pricing policy, the value of V , and the hazard function Λ (ỹτ ), this problem is
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reduced to minimizing the cost of the review signal over the expected life of the policy.
Specifically, Λ solves

minΛE
∑∞

τ=1 β
τΓ (ỹτ−1) I

(
Λ (ỹτ ) ,Λ

)
,

where the quantity of information acquired in each period for the review decision is given by

I
(
Λ,Λ

)
≡ Λ

[
log Λ− log Λ

]
+ (1− Λ)

[
log (1− Λ)− log

(
1− Λ

)]
.

This minimization problem is equivalent to maximizing

E
{∑∞

τ=1 β
τΓ (ỹτ−1)

[
Λ (ỹτ ) log Λ +

(
1− Λ (ỹτ ) log

(
1− Λ

))]}
.

The first order condition yields

Λ =
E{∑∞τ=1 β

τΓ(ỹτ−1)Λ(ỹτ )}
E{∑∞τ=1 β

τΓ(ỹτ−1)} .

The Frequency of Prices

Given the results above, the firm’s pricing policy maximizes E
∑∞

τ=0 β
τΓ (ỹτ ) Π (yτ ) .

Holding fixed the review policy, the support of the price signal, and the conditional price
distribution, the problem of choosing the optimal anticipated frequency of prices is reduced
to minimizing the total cost of the price signal over the expected life of the policy.

Specifically, f (q) > 0 solves

minf(q) E
{∑∞

τ=0 β
τΓ (ỹτ )

[∑
q∈Q f (q|yτ )

[
log f (q|yτ )− log f (q)

]]}
subject to

∑
q∈Q f (q) = 1, just as the frequency of reviews, Λ, was shown to minimize the

cost of the review signal. Forming the Lagrangian with multiplier µ, the first order condition
for each q charged with positive probability yields

E
{∑∞

τ=0 β
τΓ (ỹτ ) f(q|yτ )

f(q)

}
= µ. Summing over q yields

µ = E {
∑∞

τ=0 β
τΓ (ỹτ )}. Hence,

f (q) =
E{∑∞τ=0 β

τΓ(ỹτ )f(q|yτ )}
E{∑∞τ=0 β

τΓ(ỹτ )} .

Finally, the proof that f and f specify the unique optimal pricing policy among all pricing
policies with support Q follows from the strict concavity of E

∑∞
τ=0 β

τΓ (ỹτ ) Π (yτ ) in f and
f . See also Csiszar (1974) in the information theory literature.
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The Optimal Support

Consider the firm’s pricing objective, taking as given the review policy, E
∑∞

τ=0 β
τΓ(ỹτ )Π(yτ ).

Substituting in the optimal conditional distribution f(q|y) for a given marginal f(q), the ob-
jective becomes proportional to

E
{∑∞

τ=0 β
τΓ(ỹτ ) log

[∑
q′∈Q f(q′) exp

{
1
θp
π(q′ − yτ )

}]}
subject to

∑
q∈Q f(q) = 1 and f(q) ≥ 0 for all q.

Let µ and η(q) be the Lagrange multipliers on the two constraints. Differentiating with
respect to f yields

Z(q; f)− µ+ η(q) = 0, where

Z(q; f) ≡ E

{∑∞
τ=0

βτΓ(ỹτ ) exp{ 1
θp
π(q−yτ )}∑

q′∈Q f(q′) exp{ 1
θp
π(q′−yτ )}

}
.

For f(q) > 0 such that η(q) = 0, multiplying by f(q) yields

Z(q; f)f(q) = µf(q), and summing over q yields µ = 1. Hence

Z
(
q; f
) { ≤ 1 for all q

= 1 if f(q) > 0

and f(q) can be found by iterating on the fixed point Z(q; f)f(q) = f(q).

Threshold Information Cost

Following Rose (1994), the points of support must satisfy the following necessary conditions:∫
G (y|q) ∂π(q−y)

∂q
dy = 0,

∫
G (y|q)

[
∂2π(q−y)

∂q2
+ 1

θp

(
∂π(q−y)

∂q

)2
]
dy ≤ 0,

These necessary conditions imply that the single-price policy, if optimal, is defined by the
price

q = arg maxq
∫
G (y)π (q − y) dy.

and the threshold cost of the price signal that is sufficiently low such that the single-price
policy is not optimal is given by

θ
p ≡

∫
G(y)( ∂

∂q
π(q−y))

2
dy∫

G(y)
(
∂2

∂q2
π(q−y)

)
dy
, where the derivatives are evaluated at q.
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B.4 Law of motions for the distributions

Let ft−k ≡ f ∗(ωt−k), i.e. the distribution of prices optimally chosen by the firms that reviewed
their policy in period t−k. Let Pt−k(qt = q|yt = ỹ) denote the probability of qt being q given
yt being ỹ that corresponds to the distribution ft−k. In this definition, k denotes the age
of the firm’s policy in period t. For numerical implementation, assume that k is bounded
above by K. A firm with the policy whose age is K is assumed to review and update its
policy. Let Φ̃t(qi, ỹj, k) denote the mass of firms with qi, ỹj, and k-period old policy at the
beginning of the period k after the realization of the aggregate shock νt. Similarly, let Φt

denote the mass of firms with qi, ỹj, and k-period old policy at the end of period t after the
review decision has been made. Then,

Φ̃t+1(qi, ỹj, 0) = 0

Φ̃t+1(qi, ỹj, 1) = Pha(ξt+1 = ỹj − ηt+1)× Pt(qt = qi|yt = 0)×
{∑

m

∑
l

∑
n

Λ(ỹm, ωt)Φ̃t(ql, ỹm, n)

}
+ Pha(ξt+1 = ỹj − ηt+1)× Pt(qt = qi|yt = 0)×

∑
m

∑
l

{1− Λ(ỹm, ωt)}Φ̃t(ql, ỹm, K)

Φ̃t+1(qi, ỹj, k) = Pha(ξt+1 = ỹj − ỹm − ηt+1)

×
∑
m

∑
l

Pt−k+1(qt = qi|yt = ỹm)× {1− Λ(ỹm, ωt)}Φ̃t(ql, ỹm, k − 1) for k = 2, 3, ..., K

Φt+1(qi, ỹj, 0) = 1{ỹj=0} × Pt+1(qt+1 = qi|yt+1 = 0)×∑
m

∑
l

{∑
n

Λ(ỹm, ωt)Φ̃t+1(ql, ỹm, n) + {1− Λ(ỹm, ωt)}Φ̃t+1(ql, ỹm, K)
}

Φt+1(qi, ỹj, k) = Pt−k+1(qt+1 = qi|yt+1 = ỹj)×
∑
l

{1− Λ(ỹj, ωt)}Φ̃t+1(ql, ỹj, k) for k = 1, 2, ..., K

Finally, the distributions over q and ỹ are given by

Φ̃t+1(qi, ỹj) =
K∑
k=0

Φ̃t+1(qi, ỹj, k)

Φt+1(qi, ỹj) =
K∑
k=0

Φt+1(qi, ỹj, k)
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B.5 Steady State Equations

The steady state is given by the following set of equations:

V ss(ỹi) = Πss(ỹi) + β

∫ ∫
W ss(ỹi + ξi)hξdξi (B.11)

W ss(ỹi) = V
ss − κ+ θr log

[
Λ
ss

+ (1− Λ
ss

) exp

{
1

θr
[
V ss(ỹi)− V

ss
+ κ
]}]

(B.12)

Λss(ỹi) =

Λ
ss

1−Λ
ss exp

{
1
θr

[
V
ss − κ− V ss(ỹi)

]}
1 + Λ

ss

1−Λ
ss exp

{
1
θr

[
V
ss − κ− V ss(ỹi)

]} (B.13)

Πss(yi) =
∑
q∈Qss

f ss(q|yi)
[
π(q − yi; Ỹ ss)− θp log

(
f ss(q|yi)
f
ss

(q)

)]
(B.14)

f ss(q|yi) =
f
ss

(q) exp
{

1
θp
π(q − yi; Ỹ ss)

}
∑

q′∈Qss
f
ss

(q′) exp
{

1
θp
π(q′ − yi; Ỹ ss)

} (B.15)

Ỹ ss = Ỹ (Ωss) =

{∫
e(1−ε)(q−y)Φss(dq, dy)

}−1/(1−ε)

(B.16)

where Φss is the invariant steady state joint distribution of post-review prices and targets
implied by the joint distribution of pre-review targets and policies in the steady state Ωss,

Λ
ss

=
JΛ,ss(0)

J1,ss(0)
, (B.17)

(B.18)

f
ss

(q) =
F f,ss(q; 0)

F 1,ss(0)
, (B.19)

(B.20)

Z
ss

(q) = Zss(q; 0), (B.21)

where

J1,ss(ỹi) = β

∫ ∫ {
1 + [1− Λss(ỹi + ξi)] J

1,ss(ỹi + ξi)
}
hξdξi (B.22)

JΛ,ss(ỹi) = β

∫ ∫
{Λss(ỹi + ξi) + [1− Λss(ỹi + ξi)] J

Λ,ss(ỹi + ξi)}hξdξi (B.23)

F 1,ss(ỹi) =

∫ ∫ {
1 + β [1− Λss(ỹi + ξi)]F

1,ss(ỹi + ξi)
}
hξdξi (B.24)

F f,ss(q; ỹi) =

∫ ∫
{f ss(q|ỹi) + β [1− Λss(ỹi + ξi)]F

f,ss(q; ỹi + ξi)}hξdξi (B.25)
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Zss(q; ỹi) =

∫ ∫
{Xss(q; ỹi) + β [1− Λss(ỹi + ξi)]X

ss(q; ỹi + ξi)}hξdξi (B.26)

Xss(q; yi) ≡
exp

{
1
θp
π(q − yi; Ỹ ss

}
∑

q′∈Qss
f
ss

(q′) exp
{

1
θp
π(q′ − yi; Ỹ ss

} . (B.27)
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C Model of Price Setting

This appendix derives the equations that characterize the model of price setting presented
in the paper.

Households The problem of the representative household is standard. Inter-temporal
consumer optimization yields the standard first order conditions:

Wt (i) = Ht (i)ν Cσ
t Pt and

1

1 + it
= βEt

[
C−σt+1Pt

C−σt Pt+1

]
.

Intra-temporal expenditure minimization yields a demand function for each variety i,

Ct(i) = At (i)ε−1 Pt(i)
−εP ε

t Ct.

Firms The firm’s nominal profit each period is

Πt(i) = Pt(i)Yt(i)−Wt (i)Ht (i) .

Substituting the household’s optimality conditions and market clearing in the firm’s profit
function, profit in units of marginal utility becomes

πt(i) = Y −σt

[(
Pt(i)

At(i)Pt

)1−ε

−
(

Pt(i)

At(i)Pt

)−εη
Y η+σ
t

]
,

where η ≡ γ(1 + ν).

Full Information Solution The first order condition with respect to Pt(i) yields

Pt(i) =

(
εη

ε− 1

) 1
εη−ε+1

Y
η+σ

εη−ε+1

t PtAt(i).

Plugging this solution into the aggregate price index, the equilibrium output level in the
flexible price economy is

Y∗ =

(
ε− 1

εη

) 1
η+σ

, ∀t. (C.1)

In equilibrium, Mt = PtYt, hence the optimal price is

Pt(i) =

(
εη

ε− 1

) 1
η+σ

MtAt(i). (C.2)

Partial Equilibrium Suppose that the economy evolves according to the flexible price,
full information equilibrium. A set of firms of measure zero are information-constrained.
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Using the full-information equilibrium outcomes, the profit of a constrained firm becomes

πt(i) =

(
ε− 1

εη

) −σ
η+σ

[(
Pt(i)

Xt(i)

)1−ε

−
(
ε− 1

εη

)(
Pt(i)

Xt(i)

)−εη]
,

where Xt(i) is the optimal full-information price given by equation (C.2). Note that the profit
function is maximized at Pt(i) = Xt(i), hence Xt(i) is also the current profit-maximizing
price for the information-constrained firm in the static problem, excluding information costs.
Therefore, the rationally inattentive firm would like to set a price that is as close as possible
to this target, subject to the costs of acquiring information about its evolution.

Using logs, the per-period real profit of the information-constrained firm is proportional to
π(pt(i)− xt(i)), with

π(p− x) = e−(ε−1)(p−x) − ε− 1

εη
e−εη(p−x),

which is the objective function introduced in the body of the paper.

Let the permanent component of the log target price be defined as

x̃t(i) ≡
1

η + σ
ln

(
εη

ε− 1

)
+mt + zt (i) .

Then, the log target price evolves according to

xt(i) = x̃t(i) + ζt(i),

x̃t(i) = x̃t−1(i) + µt + ξt(i),

where ζt(i) is the transitory innovation and µt + ξt(i) is the permanent innovation. The
mapping into the notation used in the main body of the paper is υ̃t (i) ≡ µt + ξt (i), and
υt (i) ≡ ζt (i).

In the stationary formulation, the normalized target prices τ periods after a review has

occurred, are ỹ0 (i) = 0, ỹτ (i) =
τ∑
j=1

(µj + ξj (i)), and yτ (i) ≡ ỹτ (i) + ζτ (i). Finally,

conditional on a review in period t, the information-constrained price in period t + τ is
pt+τ (i) = x̃t (i) + qτ (i) . The per-period profit function π(pt (i) − xt (i)) is replaced by
π(qτ (i)− yτ (i)), a function of the normalized log price and the normalized log target price.
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D Algorithm

This appendix describes the numerical algorithm that solves the firm’s optimal policy.

Optimal Review Algorithm For a Given Pricing Algorithm

1. Given a distribution for the permanent shock ν̃, discretize ỹ in ny points and compute
the transition probability matrix π̃ (ỹ′|ỹ) using the Tauchen method.

2. Guess a hazard function for policy reviews Λ (ỹ).

3. Compute a finite approximation to the discounted distribution of pre-review target prices
over the life of the policy G̃ (ỹ).

4. Find the implied Λ =
∫

Λ (ỹ) G̃(ỹ)dỹ.

5. Compute a finite approximation to the discounted distribution of post-review target prices
over the life of the policy G (y)

6. Find the optimal pricing-policy following the algorithm described in the next section.
This returns a vector of prices q∗ with associated marginal and conditional distributions
f̄(q∗) and f(q∗|y).

7. Compute the expected profit function Π (q − y|ỹ).

8. Iterate until convergence on the value function

V (q, ỹ) = Π (q − y|ỹ) + β
∑
ỹ′

V (q, ỹ′)π̃(ỹ′, ỹ)∀ỹ

9. Compute the new hazard function,

Λ (ỹ)new =

Λ
1−Λ

e{
1
θr

(V (q,0)−κ−V (q,ỹ)}

1 + Λ
1−Λ

e{
1
θr

(V (q,0)−κ−V (q,ỹ)}

10. If the maximum difference between Λ (ỹ)new and Λ (ỹ) is small enough, stop. Otherwise,
update Λ (ỹ) as follows and go back to step 3:

Λ (ỹ) = δΛ (ỹ) + (1− δ)Λ (ỹ)new , 0 < δ ≤ 1

Optimal Pricing Algorithm For a Given Review Policy

1. Define nq as the number of prices in the pricing policy, and q∗{nq} as the optimal pricing
policy with nq different prices.

2. Find the single price policy (q∗spp) using the algorithm described in the next section.
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3. Initialize the pricing policy. q∗{1} = q∗spp.

4. Create a dense grid of prices qout, with M equally spaced prices between ỹmin and ỹmax,
which are the minimum and maximum values for ỹ in the grid. Define wout as the space
between prices in qout, and add to this grid the vector of prices q∗{nq}.

5. Compute the function Zout for each price q̃ in qout:

Zout(q̃) =

∫
G(y)

e{
1
θp
π(q̃,y)}∑

q f̄(q)e{
1
θp
π(q,y)}dy

6. Find q̃∗ such that:
q̃∗ = arg max

q̃

{
Zout(q̃)

}
7. Find the closest price to q̃∗ in the vector q∗{nq}. Call that price qclose

8. If the distance between qclose and q̃∗ is less than wout, stop and conclude that there are
no more prices in the pricing policy. Otherwise, conclude that there is another price in
the pricing policy q∗, and continue to the next step.

9. Increase in one unit nq, namely nq = nq + 1.

10. Given nq, find the optimal pricing policy q∗{nq}, f̄(q∗{nq}) as follows:

(a) Given a guess for q∗{nq} = q{n}, compute the optimal marginal distributions f̄(q{n})
using the Blahut-Arimoto algorithm described in the last section of this appendix.

(b) Compute:

W (q{n}) =

∫
G(y|q{n})π(q{n} − y)dy

W ′(q{n}) =

∫
G(y|q{n})∂π(q{n} − y)

∂q
dy

W ′′(q{n}) =

∫
G(y|q{n})

[
∂2π(q{n} − y)

∂q2
+

1

θp

(
∂π(q{n} − y)

∂q

)2
]
dy

(c) Update your guess for q∗{nq} following Newton’s algorithm:

q{n+1} = q{n} −
[
W ′′ (q{n})]−1

W ′ (q{n}) , n ≥ 1

(d) If the difference between q{n+1} and q{n} is small, define q∗{nq} = q{n+1} and stop.

Otherwise, go back to step (a).

11. Go back to step 5.
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Single Price Algorithm For a Given Review Policy

This algorithm assumes that the distribution G(y) is known and exploits the following facts
that: (i) the value function V (q, 0) is single peaked, and (ii) the optimal price q∗ is between
[ỹmin, ỹmax] which are the minimum an maximum values in the grid for ỹ.

1. Given qrange = [qmin, qmax], define q̄ as the mid point of qrange.

2. Compute the function W (q̄) =
∫
π(q − y)G(y)dy

3. Compute the derivative W ′(q̄) = ∂W (q̄)
∂q

=
∫ ∂π(q−y)

∂q
G(y)dy

4. If the difference between qmax and qmin, or W ′, is small, q∗ = q̄. Otherwise, update qrange

as follows and go back to step 1:

qrange = [qmin, q̄] if W ′(q̄) < 0

qrange = [q̄, qmax] if W ′(q̄) > 0

The Blahut-Arimoto Algorithm

For a given support, the optimal marginal distribution is found by iterating on

f (q) = f (q)

∫
exp

{
1
θp
π(q − y)

}∑
q̂∈Q f (q̂) exp

{
1
θp
π (q̂ − y)

}G (y) dy.

For a given f (q), the conditional distribution is then given by

f (q|y) = f (q)
exp

{
1
θp
π (q − y)

}∑
q̂∈Q f (q̂) exp

{
1
θp
π (q̂ − y)

} .
For a proof of convergence, see Csiszar (1974).

For a given grid Q = {qj} of size n, the algorithm proceeds as follows:

1. Initialize f
(0)

j = 1/n, j = 1, .., n.

2. Compute the ny × n matrix d whose (ij)th entry is given by

dij = exp

{
1

θp
π(qj − yi)

}
.

3. Compute

Di =
n∑
j=1

f
(k)

j dij, i = 1, .., ny;
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4. Compute

Z
(k)
j =

ny∑
i=1

Gi
dij
Di

, j = 1, .., n;

f
(k+1)

j = f
(k)

j Z
(k)
j , j = 1, .., n.

5. Compute

TU = −
n∑
j=1

f
(k+1)

j lnZ
(k)
j ;TL = −max

j
lnZ

(k)
j .

If TU − TL exceeds a prescribed tolerance level, go back to the beginning of step 3.

6. Compute the resulting conditional and marginal, and the associated expected profit Π
and information flow I

fjk = fk
djk
Dj

; fk =

ny∑
j=1

fjkGj;

Π =

ny∑
j=1

n∑
k=1

π(qk − yj)fjkGj;

I =
1

θp
Π−

ny∑
j=1

Gj logDj.

The upper and lower triggers, TU and TL, generate, via successive iterations, a decreasing
and an increasing sequence respectively, which converge to the information flow I for a given
expected profit, Π, and hence information cost, θp (see discussion in Blahut, 1972).
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